Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 1;330(Pt 2):777–784. doi: 10.1042/bj3300777

A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes.

F J Corpas 1, J B Barroso 1, L M Sandalio 1, S Distefano 1, J M Palma 1, J A Lupiáñez 1, L A Del Río 1
PMCID: PMC1219205  PMID: 9480890

Abstract

The presence of the two NADP-dependent dehydrogenases of the pentose phosphate pathway has been investigated in plant peroxisomes from pea (Pisum sativum L.) leaves. Both enzymes, glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44), were present in the matrix of leaf peroxisomes, and their kinetic properties were studied. G6PDH and 6PGDH showed a typical Michaelis-Menten kinetic saturation curve, and had specific activities of 12.4 and 29.6 mU/mg protein, respectively. The Km values of G6PDH and 6PGDH for glucose 6-phosphate and for 6-phosphogluconate were 107.3 and 10.2 microM, respectively. Dithiothreitol did not inhibit G6PDH activity. By isoelectric focusing of peroxisomal matrices, the G6PDH activity was resolved into three isoforms with isoelectric points of 5.55, 5.30 and 4.85. The isoelectric point of peroxisomal 6PGDH was 5.10. Immunoblot analyses of peroxisomal matrix with an antibody against yeast G6PDH revealed a single cross-reactive band of 56 kDa. Post-embedment, EM immunogold labelling of G6PDH confirmed that this enzyme was localized in the peroxisomal matrices, the thylakoid membrane and matrix of chloroplasts, and the cytosol. The presence of the two oxidative enzymes of the pentose phosphate pathway in plant peroxisomes implies that these organelles have the capacity to reduce NADP+ to NADPH for its re-utilization in the peroxisomal metabolism. NADPH is particularly required for the ascorbate-glutathione cycle, which has been recently demonstrated in plant peroxisomes [Jiménez, Hernández, del Río and Sevilla (1997) Plant Physiol. 114, 275-284] and represents an important antioxidant protection system against H2O2 generated in peroxisomes.

Full Text

The Full Text of this article is available as a PDF (485.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
  2. Alani A. A., Luster D. G., Donaldson R. P. Development of Endoplasmic Reticulum and Glyoxysomal Membrane Redox Activities during Castor Bean Germination. Plant Physiol. 1990 Dec;94(4):1842–1848. doi: 10.1104/pp.94.4.1842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antonenkov V. D. Dehydrogenases of the pentose phosphate pathway in rat liver peroxisomes. Eur J Biochem. 1989 Jul 15;183(1):75–82. doi: 10.1111/j.1432-1033.1989.tb14898.x. [DOI] [PubMed] [Google Scholar]
  4. Bautista J. M., Mason P. J., Luzzatto L. Purification and properties of human glucose-6-phosphate dehydrogenase made in E. coli. Biochim Biophys Acta. 1992 Feb 13;1119(1):74–80. doi: 10.1016/0167-4838(92)90237-8. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Bunkelmann J. R., Trelease R. N. Ascorbate peroxidase. A prominent membrane protein in oilseed glyoxysomes. Plant Physiol. 1996 Feb;110(2):589–598. doi: 10.1104/pp.110.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carrillo N., Lucero H. A., Vallejos R. H. Light modulation of chloroplast membrane-bound ferredoxin-NADP+ oxidoreductase. J Biol Chem. 1981 Feb 10;256(3):1058–1059. [PubMed] [Google Scholar]
  8. Corpas F. J., Bunkelmann J., Trelease R. N. Identification and immunochemical characterization of a family of peroxisome membrane proteins (PMPs) in oilseed glyoxysomes. Eur J Cell Biol. 1994 Dec;65(2):280–290. [PubMed] [Google Scholar]
  9. Corpas F. J., García-Salguero L., Barroso J. B., Aranda F., Lupiáez J. A. Kinetic properties of hexose-monophosphate dehydrogenases. II. Isolation and partial purification of 6-phosphogluconate dehydrogenase from rat liver and kidney cortex. Mol Cell Biochem. 1995 Mar 23;144(2):97–104. doi: 10.1007/BF00944387. [DOI] [PubMed] [Google Scholar]
  10. Corpas F. J., García-Salguero L., Peragón J., Lupiáez J. A. Kinetic properties of hexose-monophosphate dehydrogenases. I. Isolation and partial purification of glucose-6-phosphate dehydrogenase from rat liver and kidney cortex. Life Sci. 1995;56(3):179–189. doi: 10.1016/0024-3205(94)00433-s. [DOI] [PubMed] [Google Scholar]
  11. Corpas F. J., Palma J. M., del Río L. A. Evidence for the presence of proteolytic activity in peroxisomes. Eur J Cell Biol. 1993 Jun;61(1):81–85. [PubMed] [Google Scholar]
  12. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  13. DOWD J. E., RIGGS D. S. A COMPARISON OF ESTIMATES OF MICHAELIS-MENTEN KINETIC CONSTANTS FROM VARIOUS LINEAR TRANSFORMATIONS. J Biol Chem. 1965 Feb;240:863–869. [PubMed] [Google Scholar]
  14. Distefano S., Palma J. M., Gómez M., Río L. A. Characterization of endoproteases from plant peroxisomes. Biochem J. 1997 Oct 15;327(Pt 2):399–405. doi: 10.1042/bj3270399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Donaldson R. P. Nicotinamide cofactors (NAD and NADP) in glyoxysomes, mitochondria, and plastids isolated from castor bean endosperm. Arch Biochem Biophys. 1982 Apr 15;215(1):274–279. doi: 10.1016/0003-9861(82)90305-8. [DOI] [PubMed] [Google Scholar]
  16. Eggleston L. V., Krebs H. A. Regulation of the pentose phosphate cycle. Biochem J. 1974 Mar;138(3):425–435. doi: 10.1042/bj1380425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fahimi H. D., Reich D., Völkl A., Baumgart E. Contributions of the immunogold technique to investigation of the biology of peroxisomes. Histochem Cell Biol. 1996 Jul;106(1):105–114. doi: 10.1007/BF02473205. [DOI] [PubMed] [Google Scholar]
  18. Farr T. J., Huppe H. C., Turpin D. H. Coordination of Chloroplastic Metabolism in N-Limited Chlamydomonas reinhardtii by Redox Modulation (I. The Activation of Phosphoribulosekinase and Glucose-6-Phosphate Dehydrogenase Is Relative to the Photosynthetic Supply of Electrons). Plant Physiol. 1994 Aug;105(4):1037–1042. doi: 10.1104/pp.105.4.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fickenscher K., Scheibe R. Purification and properties of the cytoplasmic glucose-6-phosphate dehydrogenase from pea leaves. Arch Biochem Biophys. 1986 Jun;247(2):393–402. doi: 10.1016/0003-9861(86)90598-9. [DOI] [PubMed] [Google Scholar]
  20. Gleason F. K. Glucose-6-phosphate dehydrogenase from the cyanobacterium, Anabaena sp. PCC 7120: purification and kinetics of redox modulation. Arch Biochem Biophys. 1996 Oct 15;334(2):277–283. doi: 10.1006/abbi.1996.0456. [DOI] [PubMed] [Google Scholar]
  21. Graeve K., von Schaewen A., Scheibe R. Purification, characterization, and cDNA sequence of glucose-6-phosphate dehydrogenase from potato (Solanum tuberosum L.). Plant J. 1994 Mar;5(3):353–361. doi: 10.1111/j.1365-313x.1994.00353.x. [DOI] [PubMed] [Google Scholar]
  22. Grigor M. R. Multiple molecular forms of rat mammary glucose-6-phosphate dehydrogenase: proposed role in turnover of the enzyme. Arch Biochem Biophys. 1984 Mar;229(2):612–622. doi: 10.1016/0003-9861(84)90194-2. [DOI] [PubMed] [Google Scholar]
  23. Hizi A., Yagil G. On the mechanism of glucose-6-phosphate dehydrogenase regulation in mouse liver. 2. Purification and properties of the mouse-liver enzyme. Eur J Biochem. 1974 Jun 1;45(1):201–209. doi: 10.1111/j.1432-1033.1974.tb03544.x. [DOI] [PubMed] [Google Scholar]
  24. Jimenez A., Hernandez J. A., Del Rio L. A., Sevilla F. Evidence for the Presence of the Ascorbate-Glutathione Cycle in Mitochondria and Peroxisomes of Pea Leaves. Plant Physiol. 1997 May;114(1):275–284. doi: 10.1104/pp.114.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Juhnke H., Krems B., Kötter P., Entian K. D. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet. 1996 Sep 25;252(4):456–464. doi: 10.1007/BF02173011. [DOI] [PubMed] [Google Scholar]
  26. Levine R. L., Williams J. A., Stadtman E. R., Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994;233:346–357. doi: 10.1016/s0076-6879(94)33040-9. [DOI] [PubMed] [Google Scholar]
  27. Levy H. R. Glucose-6-phosphate dehydrogenases. Adv Enzymol Relat Areas Mol Biol. 1979;48:97–192. doi: 10.1002/9780470122938.ch3. [DOI] [PubMed] [Google Scholar]
  28. Lupiañez J. A., Adroher F. J., Vargas A. M., Osuna A. Differential behaviour of glucose 6-phosphate dehydrogenase in two morphological forms of Trypanosoma cruzi. Int J Biochem. 1987;19(11):1085–1089. doi: 10.1016/0020-711x(87)90310-7. [DOI] [PubMed] [Google Scholar]
  29. López-Huertas E., Sandalio L. M., Gómez M., Del Río L. A. Superoxide radical generation in peroxisomal membranes: evidence for the participation of the 18 kDa integral membrane polypeptide. Free Radic Res. 1997 Jun;26(6):497–506. doi: 10.3109/10715769709097820. [DOI] [PubMed] [Google Scholar]
  30. López-Huertas E., Sandalió L. M., Del Rio L. A. Superoxide generation in plant peroxisomal membranes: characterization of redox proteins involved. Biochem Soc Trans. 1996 May;24(2):195S–195S. doi: 10.1042/bst024195s. [DOI] [PubMed] [Google Scholar]
  31. Martini G., Ursini M. V. A new lease of life for an old enzyme. Bioessays. 1996 Aug;18(8):631–637. doi: 10.1002/bies.950180806. [DOI] [PubMed] [Google Scholar]
  32. Martins R. N., Stokes G. B., Masters C. L. Regulation of the multiple molecular forms of rat liver glucose 6-phosphate dehydrogenase by insulin and dietary restriction. Biochem Biophys Res Commun. 1985 Feb 28;127(1):136–142. doi: 10.1016/s0006-291x(85)80136-4. [DOI] [PubMed] [Google Scholar]
  33. Moradas-Ferreira P., Costa V., Piper P., Mager W. The molecular defences against reactive oxygen species in yeast. Mol Microbiol. 1996 Feb;19(4):651–658. doi: 10.1046/j.1365-2958.1996.403940.x. [DOI] [PubMed] [Google Scholar]
  34. Ninfali P., Palma F., Fornaini G. Rabbit bone marrow glucose-6-phosphate dehydrogenase during erythroid cell development. Mol Cell Biochem. 1987 Jun;75(2):85–92. doi: 10.1007/BF00229896. [DOI] [PubMed] [Google Scholar]
  35. Palma J. M., Pastori G. M., Bueno P., Distefano S., Del Río L. A. Purification and properties of cytosolic copper, zinc superoxide dismutase from watermelon (Citrullus vulgaris Schrad.) cotyledons. Free Radic Res. 1997 Jan;26(1):83–91. doi: 10.3109/10715769709097787. [DOI] [PubMed] [Google Scholar]
  36. Pandolfi P. P., Sonati F., Rivi R., Mason P., Grosveld F., Luzzatto L. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 1995 Nov 1;14(21):5209–5215. doi: 10.1002/j.1460-2075.1995.tb00205.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pastori G. M., Del Rio L. A. Natural Senescence of Pea Leaves (An Activated Oxygen-Mediated Function for Peroxisomes). Plant Physiol. 1997 Feb;113(2):411–418. doi: 10.1104/pp.113.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Patel B. N., Mackness M. I., Connock M. J. Peroxisomal localization of glucose-6-phosphate dehydrogenase and pyrophosphate-stimulated dihydroxyacetone-phosphate acyltransferase in mouse kidney. Biochem J. 1987 Jun 1;244(2):443–448. doi: 10.1042/bj2440443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Peragón J., Aranda F., García-Salguero L., Vargas A. M., Lupiáez J. A. Long-term adaptive response to dietary protein of hexose monophosphate shunt dehydrogenases in rat kidney tubules. Cell Biochem Funct. 1990 Jan;8(1):11–17. doi: 10.1002/cbf.290080103. [DOI] [PubMed] [Google Scholar]
  40. Pettersson G. Asymptotic properties of enzymatic rate equations of the Wong-Hanes type. Acta Chem Scand. 1970;24(4):1271–1274. doi: 10.3891/acta.chem.scand.24-1271. [DOI] [PubMed] [Google Scholar]
  41. Sandalio L. M., López-Huertas E., Bueno P., Del Río L. A. Immunocytochemical localization of copper,zinc superoxide dismutase in peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons. Free Radic Res. 1997 Mar;26(3):187–194. doi: 10.3109/10715769709097798. [DOI] [PubMed] [Google Scholar]
  42. Scheibe R., Geissler A., Fickenscher K. Chloroplast glucose-6-phosphate dehydrogenase: Km shift upon light modulation and reduction. Arch Biochem Biophys. 1989 Oct;274(1):290–297. doi: 10.1016/0003-9861(89)90441-4. [DOI] [PubMed] [Google Scholar]
  43. Schnarrenberger C., Flechner A., Martin W. Enzymatic Evidence for a Complete Oxidative Pentose Phosphate Pathway in Chloroplasts and an Incomplete Pathway in the Cytosol of Spinach Leaves. Plant Physiol. 1995 Jun;108(2):609–614. doi: 10.1104/pp.108.2.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schnarrenberger C., Oeser A., Tolbert N. E. Two isoenzymes each of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in spinach leaves. Arch Biochem Biophys. 1973 Jan;154(1):438–448. doi: 10.1016/0003-9861(73)90077-5. [DOI] [PubMed] [Google Scholar]
  45. Slekar K. H., Kosman D. J., Culotta V. C. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J Biol Chem. 1996 Nov 15;271(46):28831–28836. doi: 10.1074/jbc.271.46.28831. [DOI] [PubMed] [Google Scholar]
  46. Suss K. H., Arkona C., Manteuffel R., Adler K. Calvin cycle multienzyme complexes are bound to chloroplast thylakoid membranes of higher plants in situ. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5514–5518. doi: 10.1073/pnas.90.12.5514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tolbert N. E. Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem. 1981;50:133–157. doi: 10.1146/annurev.bi.50.070181.001025. [DOI] [PubMed] [Google Scholar]
  48. Yamaguchi J., Nishimura M. Purification of glyoxysomal catalase and immunochemical comparison of glyoxysomal and leaf peroxisomal catalase in germinating pumpkin cotyledons. Plant Physiol. 1984 Feb;74(2):261–267. doi: 10.1104/pp.74.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. del Río L. A., Palma J. M., Sandalio L. M., Corpas F. J., Pastori G. M., Bueno P., López-Huertas E. Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem Soc Trans. 1996 May;24(2):434–438. doi: 10.1042/bst0240434. [DOI] [PubMed] [Google Scholar]
  50. del Río L. A., Sandalio L. M., Palma J. M., Bueno P., Corpas F. J. Metabolism of oxygen radicals in peroxisomes and cellular implications. Free Radic Biol Med. 1992 Nov;13(5):557–580. doi: 10.1016/0891-5849(92)90150-f. [DOI] [PubMed] [Google Scholar]
  51. von Schaewen A., Langenkämper G., Graeve K., Wenderoth I., Scheibe R. Molecular characterization of the plastidic glucose-6-phosphate dehydrogenase from potato in comparison to its cytosolic counterpart. Plant Physiol. 1995 Dec;109(4):1327–1335. doi: 10.1104/pp.109.4.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES