Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 1;330(Pt 2):795–801. doi: 10.1042/bj3300795

3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method.

J Khan 1, D M Brennand 1, N Bradley 1, B Gao 1, R Bruckdorfer 1, M Jacobs 1, D M Brennan 1
PMCID: PMC1219208  PMID: 9480893

Abstract

The modification of tyrosine residues in proteins to 3-nitrotyrosine by peroxynitrite or other potential nitrating agents has been detected in biological systems that are subject to oxidative stress. A convenient semi-quantitative method has been developed to assay nitrated proteins in biological fluids and homogenates using a competitive ELISA developed in our laboratory. This assay selectivity detected 3-nitro-l-tyrosine residues in a variety of peroxynitrite-treated proteins (BSA, human serum albumin (HSA), alpha1-antiprotease inhibitor, pepsinogen and fibrinogen) and also in a nitrated peptide, but had a low affinity for free 3-nitro-L-tyrosine and 3-chloro-L-tyrosine. The IC50 values for the inhibition of antibody binding by different nitrated proteins were in the range 5-100 nM, suggesting that the antibody discriminated between nitrotyrosine residues in different environments. The presence of nitrotyrosine in plasma proteins was detected by Western blot analysis and quantified by the ELISA. A concentration of 0. 12+/-0.01 microM nitro-BSA equivalents was measured in the proteins of normal plasma which was increased in peroxynitrite-treated plasma and was elevated in inflammatory conditions. HSA and low-density lipoprotein (LDL) isolated from plasma contained 0.085+/-0.04 and 0. 03+/-0.006 nmol nitro-BSA equivalents/mg protein, respectively. Comparison of the level of nitration in peroxynitrite-treated HSA and LDL in the presence and absence of plasma indicates that nitration and presumably oxidation is inhibited by plasma antioxidants. The presence of nitrotyrosine in LDL is consistent with previous reports implicating peroxynitrite in the oxidative modification of lipoproteins and the presence of a low concentration of oxidized LDL in the blood.

Full Text

The Full Text of this article is available as a PDF (363.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckman J. S., Chen J., Ischiropoulos H., Crow J. P. Oxidative chemistry of peroxynitrite. Methods Enzymol. 1994;233:229–240. doi: 10.1016/s0076-6879(94)33026-3. [DOI] [PubMed] [Google Scholar]
  2. Beckman J. S., Koppenol W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996 Nov;271(5 Pt 1):C1424–C1437. doi: 10.1152/ajpcell.1996.271.5.C1424. [DOI] [PubMed] [Google Scholar]
  3. Beckmann J. S., Ye Y. Z., Anderson P. G., Chen J., Accavitti M. A., Tarpey M. M., White C. R. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler. 1994 Feb;375(2):81–88. doi: 10.1515/bchm3.1994.375.2.81. [DOI] [PubMed] [Google Scholar]
  4. Black C. M. The aetiopathogenesis of systemic sclerosis. J Intern Med. 1993 Jul;234(1):3–8. doi: 10.1111/j.1365-2796.1993.tb00697.x. [DOI] [PubMed] [Google Scholar]
  5. Eiserich J. P., Butler J., van der Vliet A., Cross C. E., Halliwell B. Nitric oxide rapidly scavenges tyrosine and tryptophan radicals. Biochem J. 1995 Sep 15;310(Pt 3):745–749. doi: 10.1042/bj3100745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eiserich J. P., Cross C. E., Jones A. D., Halliwell B., van der Vliet A. Formation of nitrating and chlorinating species by reaction of nitrite with hypochlorous acid. A novel mechanism for nitric oxide-mediated protein modification. J Biol Chem. 1996 Aug 9;271(32):19199–19208. doi: 10.1074/jbc.271.32.19199. [DOI] [PubMed] [Google Scholar]
  7. Eiserich J. P., Vossen V., O'Neill C. A., Halliwell B., Cross C. E., van der Vliet A. Molecular mechanisms of damage by excess nitrogen oxides: nitration of tyrosine by gas-phase cigarette smoke. FEBS Lett. 1994 Oct 10;353(1):53–56. doi: 10.1016/0014-5793(94)01011-0. [DOI] [PubMed] [Google Scholar]
  8. Gow A. J., Duran D., Malcolm S., Ischiropoulos H. Effects of peroxynitrite-induced protein modifications on tyrosine phosphorylation and degradation. FEBS Lett. 1996 Apr 29;385(1-2):63–66. doi: 10.1016/0014-5793(96)00347-x. [DOI] [PubMed] [Google Scholar]
  9. Graham A., Hogg N., Kalyanaraman B., O'Leary V., Darley-Usmar V., Moncada S. Peroxynitrite modification of low-density lipoprotein leads to recognition by the macrophage scavenger receptor. FEBS Lett. 1993 Sep 13;330(2):181–185. doi: 10.1016/0014-5793(93)80269-z. [DOI] [PubMed] [Google Scholar]
  10. Haddad I. Y., Crow J. P., Hu P., Ye Y., Beckman J., Matalon S. Concurrent generation of nitric oxide and superoxide damages surfactant protein A. Am J Physiol. 1994 Sep;267(3 Pt 1):L242–L249. doi: 10.1152/ajplung.1994.267.3.L242. [DOI] [PubMed] [Google Scholar]
  11. Haddad I. Y., Pataki G., Hu P., Galliani C., Beckman J. S., Matalon S. Quantitation of nitrotyrosine levels in lung sections of patients and animals with acute lung injury. J Clin Invest. 1994 Dec;94(6):2407–2413. doi: 10.1172/JCI117607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Halliwell B. What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett. 1997 Jul 14;411(2-3):157–160. doi: 10.1016/s0014-5793(97)00469-9. [DOI] [PubMed] [Google Scholar]
  13. Ischiropoulos H., Zhu L., Chen J., Tsai M., Martin J. C., Smith C. D., Beckman J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys. 1992 Nov 1;298(2):431–437. doi: 10.1016/0003-9861(92)90431-u. [DOI] [PubMed] [Google Scholar]
  14. Ischiropoulos H., al-Mehdi A. B. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett. 1995 May 15;364(3):279–282. doi: 10.1016/0014-5793(95)00307-u. [DOI] [PubMed] [Google Scholar]
  15. Jacobs M., Plane F., Bruckdorfer K. R. Native and oxidized low-density lipoproteins have different inhibitory effects on endothelium-derived relaxing factor in the rabbit aorta. Br J Pharmacol. 1990 May;100(1):21–26. doi: 10.1111/j.1476-5381.1990.tb12045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaur H., Halliwell B. Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett. 1994 Aug 15;350(1):9–12. doi: 10.1016/0014-5793(94)00722-5. [DOI] [PubMed] [Google Scholar]
  17. Lin K. T., Xue J. Y., Nomen M., Spur B., Wong P. Y. Peroxynitrite-induced apoptosis in HL-60 cells. J Biol Chem. 1995 Jul 14;270(28):16487–16490. doi: 10.1074/jbc.270.28.16487. [DOI] [PubMed] [Google Scholar]
  18. Nourooz-Zadeh J., Tajaddini-Sarmadi J., Ling K. L., Wolff S. P. Low-density lipoprotein is the major carrier of lipid hydroperoxides in plasma. Relevance to determination of total plasma lipid hydroperoxide concentrations. Biochem J. 1996 Feb 1;313(Pt 3):781–786. doi: 10.1042/bj3130781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ohshima H., Friesen M., Brouet I., Bartsch H. Nitrotyrosine as a new marker for endogenous nitrosation and nitration of proteins. Food Chem Toxicol. 1990 Sep;28(9):647–652. doi: 10.1016/0278-6915(90)90173-k. [DOI] [PubMed] [Google Scholar]
  20. Pryor W. A., Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci. 1993 May 28;686:12–28. doi: 10.1111/j.1749-6632.1993.tb39148.x. [DOI] [PubMed] [Google Scholar]
  21. Richards P. G., Walton D. J., Heptinstall J. The effects of tyrosine nitration on the structure and function of hen egg-white lysozyme. Biochem J. 1996 Apr 15;315(Pt 2):473–479. doi: 10.1042/bj3150473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rubbo H., Radi R., Trujillo M., Telleri R., Kalyanaraman B., Barnes S., Kirk M., Freeman B. A. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem. 1994 Oct 21;269(42):26066–26075. [PubMed] [Google Scholar]
  23. Salman-Tabcheh S., Guérin M. C., Torreilles J. Nitration of tyrosyl-residues from extra- and intracellular proteins in human whole blood. Free Radic Biol Med. 1995 Nov;19(5):695–698. doi: 10.1016/0891-5849(95)00075-9. [DOI] [PubMed] [Google Scholar]
  24. Shigenaga M. K., Lee H. H., Blount B. C., Christen S., Shigeno E. T., Yip H., Ames B. N. Inflammation and NO(X)-induced nitration: assay for 3-nitrotyrosine by HPLC with electrochemical detection. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3211–3216. doi: 10.1073/pnas.94.7.3211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sokolovsky M., Riordan J. F., Vallee B. L. Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. Biochemistry. 1966 Nov;5(11):3582–3589. doi: 10.1021/bi00875a029. [DOI] [PubMed] [Google Scholar]
  26. van der Vliet A., Eiserich J. P., Halliwell B., Cross C. E. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem. 1997 Mar 21;272(12):7617–7625. doi: 10.1074/jbc.272.12.7617. [DOI] [PubMed] [Google Scholar]
  27. van der Vliet A., Eiserich J. P., O'Neill C. A., Halliwell B., Cross C. E. Tyrosine modification by reactive nitrogen species: a closer look. Arch Biochem Biophys. 1995 Jun 1;319(2):341–349. doi: 10.1006/abbi.1995.1303. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES