Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 1;330(Pt 2):811–817. doi: 10.1042/bj3300811

Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae.

S Izawa 1, K Maeda 1, T Miki 1, J Mano 1, Y Inoue 1, A Kimura 1
PMCID: PMC1219210  PMID: 9480895

Abstract

Glucose-6-phosphate dehydrogenase (G6PDH)-deficient cells of Saccharomyces cerevisiae showed increased susceptibility and were unable to induce adaptation to oxidative stress. Historically, mainly in human erythrocytes, it has been suggested and accepted that decreased cellular GSH, due to loss of the NADPH-dependent activity of glutathione reductase (GR), is responsible for the increased sensitivity to oxidative stress in G6PDH-deficient cells. In the present study we investigated whether the increased susceptibility and the inability to induce adaptation to H2O2 stress of G6PDH-deficient yeast is caused by incompleteness of glutathione recycling. We constructed G6PDH- and GR-deficient mutants and analysed their adaptive response to H2O2 stress. Although G6PDH-deficient cells contained comparable amounts of GSH and GR activity to wild-type cells, GSSG was not reduced efficiently, and intracellular GSSG levels and the ratio of GSSG to total glutathione (GSSG/tGSH) were higher in G6PDH-deficient cells than in wild-type. On the other hand, GR-deficient cells showed a susceptibility identical with that of wild-type cells and induced adaptation to H2O2 stress, even though the GSSG/tGSH ratio in GR-deficient cells was higher than in G6PDH-deficient cells. These results indicate that incompleteness of glutathione recycling alone is not sufficient to account for the increased sensitivity and inability to induce adaptation to H2O2 stress of G6PDH-deficient yeast cells. In S. cerevisiae, G6PDH appears to play other important roles in the adaptive response to H2O2 stress besides supplying NADPH to the GR reaction.

Full Text

The Full Text of this article is available as a PDF (356.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. E. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548–555. doi: 10.1016/s0076-6879(85)13073-9. [DOI] [PubMed] [Google Scholar]
  2. Beutler E. G6PD deficiency. Blood. 1994 Dec 1;84(11):3613–3636. [PubMed] [Google Scholar]
  3. Chae H. Z., Chung S. J., Rhee S. G. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem. 1994 Nov 4;269(44):27670–27678. [PubMed] [Google Scholar]
  4. Collinson L. P., Dawes I. W. Isolation, characterization and overexpression of the yeast gene, GLR1, encoding glutathione reductase. Gene. 1995 Apr 14;156(1):123–127. doi: 10.1016/0378-1119(95)00026-3. [DOI] [PubMed] [Google Scholar]
  5. Davies J. M., Lowry C. V., Davies K. J. Transient adaptation to oxidative stress in yeast. Arch Biochem Biophys. 1995 Feb 20;317(1):1–6. doi: 10.1006/abbi.1995.1128. [DOI] [PubMed] [Google Scholar]
  6. Grant C. M., Collinson L. P., Roe J. H., Dawes I. W. Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol. 1996 Jul;21(1):171–179. doi: 10.1046/j.1365-2958.1996.6351340.x. [DOI] [PubMed] [Google Scholar]
  7. Grant C. M., MacIver F. H., Dawes I. W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet. 1996 May;29(6):511–515. doi: 10.1007/BF02426954. [DOI] [PubMed] [Google Scholar]
  8. Grant C. M., Maciver F. H., Dawes I. W. Stationary-phase induction of GLR1 expression is mediated by the yAP-1 transcriptional regulatory protein in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1996 Nov;22(4):739–746. doi: 10.1046/j.1365-2958.1996.d01-1727.x. [DOI] [PubMed] [Google Scholar]
  9. Greenberg J. T., Demple B. Glutathione in Escherichia coli is dispensable for resistance to H2O2 and gamma radiation. J Bacteriol. 1986 Nov;168(2):1026–1029. doi: 10.1128/jb.168.2.1026-1029.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hillar A., Nicholls P. A mechanism for NADPH inhibition of catalase compound II formation. FEBS Lett. 1992 Dec 14;314(2):179–182. doi: 10.1016/0014-5793(92)80969-n. [DOI] [PubMed] [Google Scholar]
  11. Hillar A., Nicholls P., Switala J., Loewen P. C. NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes. Biochem J. 1994 Jun 1;300(Pt 2):531–539. doi: 10.1042/bj3000531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Izawa S., Inoue Y., Kimura A. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem J. 1996 Nov 15;320(Pt 1):61–67. doi: 10.1042/bj3200061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Izawa S., Inoue Y., Kimura A. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett. 1995 Jul 10;368(1):73–76. doi: 10.1016/0014-5793(95)00603-7. [DOI] [PubMed] [Google Scholar]
  14. Jamieson D. J. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol. 1992 Oct;174(20):6678–6681. doi: 10.1128/jb.174.20.6678-6681.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Juhnke H., Krems B., Kötter P., Entian K. D. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet. 1996 Sep 25;252(4):456–464. doi: 10.1007/BF02173011. [DOI] [PubMed] [Google Scholar]
  16. Kirkman H. N., Galiano S., Gaetani G. F. The function of catalase-bound NADPH. J Biol Chem. 1987 Jan 15;262(2):660–666. [PubMed] [Google Scholar]
  17. Kletzien R. F., Harris P. K., Foellmi L. A. Glucose-6-phosphate dehydrogenase: a "housekeeping" enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J. 1994 Feb;8(2):174–181. doi: 10.1096/fasebj.8.2.8119488. [DOI] [PubMed] [Google Scholar]
  18. Kuge S., Jones N. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J. 1994 Feb 1;13(3):655–664. doi: 10.1002/j.1460-2075.1994.tb06304.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
  20. Miki T., Tsujimoto Y., Miyabe S., Sugiyama K., Izawa S., Inoue Y., Kimura A. Oxidative stress response in yeast: purification and characterization of glutathione reductase from Hansenula mrakii. Biosci Biotechnol Biochem. 1996 Jul;60(7):1207–1209. doi: 10.1271/bbb.60.1207. [DOI] [PubMed] [Google Scholar]
  21. Moradas-Ferreira P., Costa V., Piper P., Mager W. The molecular defences against reactive oxygen species in yeast. Mol Microbiol. 1996 Feb;19(4):651–658. doi: 10.1046/j.1365-2958.1996.403940.x. [DOI] [PubMed] [Google Scholar]
  22. Muller E. G. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Mol Biol Cell. 1996 Nov;7(11):1805–1813. doi: 10.1091/mbc.7.11.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nogae I., Johnston M. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene. 1990 Dec 15;96(2):161–169. doi: 10.1016/0378-1119(90)90248-p. [DOI] [PubMed] [Google Scholar]
  24. Rippa M., Signorini M. 6-Phosphogluconate dehydrogenase from Candida utilis. Methods Enzymol. 1975;41:237–240. doi: 10.1016/s0076-6879(75)41054-0. [DOI] [PubMed] [Google Scholar]
  25. Schnell N., Krems B., Entian K. D. The PAR1 (YAP1/SNQ3) gene of Saccharomyces cerevisiae, a c-jun homologue, is involved in oxygen metabolism. Curr Genet. 1992 Apr;21(4-5):269–273. doi: 10.1007/BF00351681. [DOI] [PubMed] [Google Scholar]
  26. Scott M. D., Lubin B. H., Zuo L., Kuypers F. A. Erythrocyte defense against hydrogen peroxide: preeminent importance of catalase. J Lab Clin Med. 1991 Jul;118(1):7–16. [PubMed] [Google Scholar]
  27. Scott M. D., Wagner T. C., Chiu D. T. Decreased catalase activity is the underlying mechanism of oxidant susceptibility in glucose-6-phosphate dehydrogenase-deficient erythrocytes. Biochim Biophys Acta. 1993 Apr 30;1181(2):163–168. doi: 10.1016/0925-4439(93)90106-b. [DOI] [PubMed] [Google Scholar]
  28. Scott M. D., Zuo L., Lubin B. H., Chiu D. T. NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Blood. 1991 May 1;77(9):2059–2064. [PubMed] [Google Scholar]
  29. Sinha A., Maitra P. K. Induction of specific enzymes of the oxidative pentose phosphate pathway by glucono-delta-lactone in Saccharomyces cerevisiae. J Gen Microbiol. 1992 Sep;138(9):1865–1873. doi: 10.1099/00221287-138-9-1865. [DOI] [PubMed] [Google Scholar]
  30. Slekar K. H., Kosman D. J., Culotta V. C. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J Biol Chem. 1996 Nov 15;271(46):28831–28836. doi: 10.1074/jbc.271.46.28831. [DOI] [PubMed] [Google Scholar]
  31. Stephen D. W., Jamieson D. J. Amino acid-dependent regulation of the Saccharomyces cerevisiae GSH1 gene by hydrogen peroxide. Mol Microbiol. 1997 Jan;23(2):203–210. doi: 10.1046/j.1365-2958.1997.2081572.x. [DOI] [PubMed] [Google Scholar]
  32. Stephen D. W., Rivers S. L., Jamieson D. J. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol Microbiol. 1995 May;16(3):415–423. doi: 10.1111/j.1365-2958.1995.tb02407.x. [DOI] [PubMed] [Google Scholar]
  33. Storz G., Toledano M. B. Regulation of bacterial gene expression in response to oxidative stress. Methods Enzymol. 1994;236:196–207. doi: 10.1016/0076-6879(94)36017-0. [DOI] [PubMed] [Google Scholar]
  34. Thomas D., Cherest H., Surdin-Kerjan Y. Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast. Inactivation leads to a nutritional requirement for organic sulfur. EMBO J. 1991 Mar;10(3):547–553. doi: 10.1002/j.1460-2075.1991.tb07981.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  36. Tsai C. S., Shi J. L., Ye H. G. Kinetic studies of gluconate pathway enzymes from Schizosaccharomyces pombe. Arch Biochem Biophys. 1995 Jan 10;316(1):163–168. doi: 10.1006/abbi.1995.1024. [DOI] [PubMed] [Google Scholar]
  37. Tsai C. S., Ye H. G., Shi J. L. Carbon-13 NMR studies and purification of gluconate pathway enzymes from Schizosaccharomyces pombe. Arch Biochem Biophys. 1995 Jan 10;316(1):155–162. doi: 10.1006/abbi.1995.1023. [DOI] [PubMed] [Google Scholar]
  38. Tuggle C. K., Fuchs J. A. Glutathione reductase is not required for maintenance of reduced glutathione in Escherichia coli K-12. J Bacteriol. 1985 Apr;162(1):448–450. doi: 10.1128/jb.162.1.448-450.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wu A. L., Moye-Rowley W. S. GSH1, which encodes gamma-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation. Mol Cell Biol. 1994 Sep;14(9):5832–5839. doi: 10.1128/mcb.14.9.5832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wu J., Weiss B. Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli. J Bacteriol. 1992 Jun;174(12):3915–3920. doi: 10.1128/jb.174.12.3915-3920.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES