Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 1;330(Pt 2):861–869. doi: 10.1042/bj3300861

Transmembrane-truncated alphavbeta3 integrin retains high affinity for ligand binding: evidence for an 'inside-out' suppressor?

R J Mehta 1, B Diefenbach 1, A Brown 1, E Cullen 1, A Jonczyk 1, D Güssow 1, G A Luckenbach 1, S L Goodman 1
PMCID: PMC1219217  PMID: 9480902

Abstract

The molecular mechanisms of alphavbeta3 integrin affinity regulation have important biological implications in tumour development, wound repair and angiogenesis. We expressed, purified and characterized recombinant forms of human alphavbeta3 (r-alphavbeta3) and compared the activation state of these with alphavbeta3 in its cellular environment. The ligand specificity and selectivity of recombinant full-length and double transmembrane truncations of r-alphavbeta3 cloned in BacPAK6 vectors and expressed in Sf9 and High Five insect cells were compared with those of native placental alphavbeta3 and the receptor in situ on the cell surface. r-alphavbeta3 integrins were purified by affinity chromatography from detergent extracts of cells (full-length), and from the culture medium of cells expressing double-truncated r-alphavbeta3. r-alphavbeta3 had the same epitopes, ligand-binding specificities, bivalent cation requirements and susceptibility to RGD-containing peptides as native alphavbeta3. On M21-L4 melanoma cells, alphavbeta3 mediated binding to vitronectin, but not to fibrinogen unless activated with Mn2+. Non-activated alphaIIbbeta3 integrin as control in M21-L-IIb cells had the opposite profile, mediating binding to fibrinogen, but not to vitronectin unless activated with Mn2+. Thus these receptors had moderate to low ligand affinity. In marked contrast, purified alphavbeta3 receptors, with or without transmembrane and cytoplasmic domains, were constitutively of high affinity and able to bind strongly to vitronectin, fibronectin and fibrinogen under physiological conditions. Our data suggest that, in contrast with the positive regulation of alphaIIbbeta3 in situ, intracellular controls lower the affinity of alphavbeta3, and the cytoplasmic domains may act as a target for negative regulators of alphavbeta3 activity.

Full Text

The Full Text of this article is available as a PDF (679.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama S. K., Yamada S. S., Yamada K. M., LaFlamme S. E. Transmembrane signal transduction by integrin cytoplasmic domains expressed in single-subunit chimeras. J Biol Chem. 1994 Jun 10;269(23):15961–15964. [PubMed] [Google Scholar]
  2. Brooks P. C., Clark R. A., Cheresh D. A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994 Apr 22;264(5158):569–571. doi: 10.1126/science.7512751. [DOI] [PubMed] [Google Scholar]
  3. Chan B. M., Hemler M. E. Multiple functional forms of the integrin VLA-2 can be derived from a single alpha 2 cDNA clone: interconversion of forms induced by an anti-beta 1 antibody. J Cell Biol. 1993 Jan;120(2):537–543. doi: 10.1083/jcb.120.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen Y. P., Djaffar I., Pidard D., Steiner B., Cieutat A. M., Caen J. P., Rosa J. P. Ser-752-->Pro mutation in the cytoplasmic domain of integrin beta 3 subunit and defective activation of platelet integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10169–10173. doi: 10.1073/pnas.89.21.10169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheresh D. A., Spiro R. C. Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor. J Biol Chem. 1987 Dec 25;262(36):17703–17711. [PubMed] [Google Scholar]
  6. Dedhar S., Hannigan G. E. Integrin cytoplasmic interactions and bidirectional transmembrane signalling. Curr Opin Cell Biol. 1996 Oct;8(5):657–669. doi: 10.1016/s0955-0674(96)80107-4. [DOI] [PubMed] [Google Scholar]
  7. Diamond M. S., Springer T. A. The dynamic regulation of integrin adhesiveness. Curr Biol. 1994 Jun 1;4(6):506–517. doi: 10.1016/s0960-9822(00)00111-1. [DOI] [PubMed] [Google Scholar]
  8. Eigenthaler M., Höfferer L., Shattil S. J., Ginsberg M. H. A conserved sequence motif in the integrin beta3 cytoplasmic domain is required for its specific interaction with beta3-endonexin. J Biol Chem. 1997 Mar 21;272(12):7693–7698. doi: 10.1074/jbc.272.12.7693. [DOI] [PubMed] [Google Scholar]
  9. Felding-Habermann B., Cheresh D. A. Vitronectin and its receptors. Curr Opin Cell Biol. 1993 Oct;5(5):864–868. doi: 10.1016/0955-0674(93)90036-p. [DOI] [PubMed] [Google Scholar]
  10. Felding-Habermann B., Habermann R., Saldívar E., Ruggeri Z. M. Role of beta3 integrins in melanoma cell adhesion to activated platelets under flow. J Biol Chem. 1996 Mar 8;271(10):5892–5900. doi: 10.1074/jbc.271.10.5892. [DOI] [PubMed] [Google Scholar]
  11. Felding-Habermann B., Mueller B. M., Romerdahl C. A., Cheresh D. A. Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest. 1992 Jun;89(6):2018–2022. doi: 10.1172/JCI115811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Filardo E. J., Cheresh D. A. A beta turn in the cytoplasmic tail of the integrin alpha v subunit influences conformation and ligand binding of alpha v beta 3. J Biol Chem. 1994 Feb 11;269(6):4641–4647. [PubMed] [Google Scholar]
  13. Gouon V., Tucker G. C., Kraus-Berthier L., Atassi G., Kieffer N. Up-regulated expression of the beta3 integrin and the 92-kDa gelatinase in human HT-144 melanoma cell tumors grown in nude mice. Int J Cancer. 1996 Nov 27;68(5):650–662. doi: 10.1002/(SICI)1097-0215(19961127)68:5<650::AID-IJC16>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  14. Horton M. A., Spragg J. H., Bodary S. C., Helfrich M. H. Recognition of cryptic sites in human and mouse laminins by rat osteoclasts is mediated by beta 3 and beta 1 integrins. Bone. 1994 Nov-Dec;15(6):639–646. doi: 10.1016/8756-3282(94)90312-3. [DOI] [PubMed] [Google Scholar]
  15. Hughes P. E., Diaz-Gonzalez F., Leong L., Wu C., McDonald J. A., Shattil S. J., Ginsberg M. H. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem. 1996 Mar 22;271(12):6571–6574. doi: 10.1074/jbc.271.12.6571. [DOI] [PubMed] [Google Scholar]
  16. Humphries M. J. Integrin activation: the link between ligand binding and signal transduction. Curr Opin Cell Biol. 1996 Oct;8(5):632–640. doi: 10.1016/s0955-0674(96)80104-9. [DOI] [PubMed] [Google Scholar]
  17. Jarvis D. L., Finn E. E. Biochemical analysis of the N-glycosylation pathway in baculovirus-infected lepidopteran insect cells. Virology. 1995 Oct 1;212(2):500–511. doi: 10.1006/viro.1995.1508. [DOI] [PubMed] [Google Scholar]
  18. Kashiwagi H., Schwartz M. A., Eigenthaler M., Davis K. A., Ginsberg M. H., Shattil S. J. Affinity modulation of platelet integrin alphaIIbbeta3 by beta3-endonexin, a selective binding partner of the beta3 integrin cytoplasmic tail. J Cell Biol. 1997 Jun 16;137(6):1433–1443. doi: 10.1083/jcb.137.6.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kidd I. M., Emery V. C. The use of baculoviruses as expression vectors. Appl Biochem Biotechnol. 1993 Aug-Sep;42(2-3):137–159. doi: 10.1007/BF02788049. [DOI] [PubMed] [Google Scholar]
  20. Kieffer N., Fitzgerald L. A., Wolf D., Cheresh D. A., Phillips D. R. Adhesive properties of the beta 3 integrins: comparison of GP IIb-IIIa and the vitronectin receptor individually expressed in human melanoma cells. J Cell Biol. 1991 Apr;113(2):451–461. doi: 10.1083/jcb.113.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kirchhofer D., Gailit J., Ruoslahti E., Grzesiak J., Pierschbacher M. D. Cation-dependent changes in the binding specificity of the platelet receptor GPIIb/IIIa. J Biol Chem. 1990 Oct 25;265(30):18525–18530. [PubMed] [Google Scholar]
  22. Kunicki T. J., Annis D. S., Deng Y. J., Loftus J. C., Shattil S. J. A molecular basis for affinity modulation of Fab ligand binding to integrin alphaIIb beta3. J Biol Chem. 1996 Aug 23;271(34):20315–20321. doi: 10.1074/jbc.271.34.20315. [DOI] [PubMed] [Google Scholar]
  23. LaFlamme S. E., Thomas L. A., Yamada S. S., Yamada K. M. Single subunit chimeric integrins as mimics and inhibitors of endogenous integrin functions in receptor localization, cell spreading and migration, and matrix assembly. J Cell Biol. 1994 Sep;126(5):1287–1298. doi: 10.1083/jcb.126.5.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marcinkiewicz C., Rosenthal L. A., Marcinkiewicz M. M., Kowalska M. A., Niewiarowski S. One-step affinity purification of recombinant alphavbeta3 integrin from transfected cells. Protein Expr Purif. 1996 Aug;8(1):68–74. doi: 10.1006/prep.1996.0075. [DOI] [PubMed] [Google Scholar]
  25. Mitjans F., Sander D., Adán J., Sutter A., Martinez J. M., Jäggle C. S., Moyano J. M., Kreysch H. G., Piulats J., Goodman S. L. An anti-alpha v-integrin antibody that blocks integrin function inhibits the development of a human melanoma in nude mice. J Cell Sci. 1995 Aug;108(Pt 8):2825–2838. doi: 10.1242/jcs.108.8.2825. [DOI] [PubMed] [Google Scholar]
  26. Montgomery A. M., Reisfeld R. A., Cheresh D. A. Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8856–8860. doi: 10.1073/pnas.91.19.8856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nishimura S. L., Sheppard D., Pytela R. Integrin alpha v beta 8. Interaction with vitronectin and functional divergence of the beta 8 cytoplasmic domain. J Biol Chem. 1994 Nov 18;269(46):28708–28715. [PubMed] [Google Scholar]
  28. O'Toole T. E., Katagiri Y., Faull R. J., Peter K., Tamura R., Quaranta V., Loftus J. C., Shattil S. J., Ginsberg M. H. Integrin cytoplasmic domains mediate inside-out signal transduction. J Cell Biol. 1994 Mar;124(6):1047–1059. doi: 10.1083/jcb.124.6.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. O'Toole T. E., Loftus J. C., Du X. P., Glass A. A., Ruggeri Z. M., Shattil S. J., Plow E. F., Ginsberg M. H. Affinity modulation of the alpha IIb beta 3 integrin (platelet GPIIb-IIIa) is an intrinsic property of the receptor. Cell Regul. 1990 Nov;1(12):883–893. doi: 10.1091/mbc.1.12.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Otey C. A., Pavalko F. M., Burridge K. An interaction between alpha-actinin and the beta 1 integrin subunit in vitro. J Cell Biol. 1990 Aug;111(2):721–729. doi: 10.1083/jcb.111.2.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pytela R., Pierschbacher M. D., Ruoslahti E. A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5766–5770. doi: 10.1073/pnas.82.17.5766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schaller M. D., Otey C. A., Hildebrand J. D., Parsons J. T. Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J Cell Biol. 1995 Sep;130(5):1181–1187. doi: 10.1083/jcb.130.5.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schwartz M. A., Schaller M. D., Ginsberg M. H. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol. 1995;11:549–599. doi: 10.1146/annurev.cb.11.110195.003001. [DOI] [PubMed] [Google Scholar]
  34. Shattil S. J., O'Toole T., Eigenthaler M., Thon V., Williams M., Babior B. M., Ginsberg M. H. Beta 3-endonexin, a novel polypeptide that interacts specifically with the cytoplasmic tail of the integrin beta 3 subunit. J Cell Biol. 1995 Nov;131(3):807–816. doi: 10.1083/jcb.131.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shimizu Y., Van Seventer G. A., Horgan K. J., Shaw S. Regulated expression and binding of three VLA (beta 1) integrin receptors on T cells. Nature. 1990 May 17;345(6272):250–253. doi: 10.1038/345250a0. [DOI] [PubMed] [Google Scholar]
  36. Smith J. W., Cheresh D. A. The Arg-Gly-Asp binding domain of the vitronectin receptor. Photoaffinity cross-linking implicates amino acid residues 61-203 of the beta subunit. J Biol Chem. 1988 Dec 15;263(35):18726–18731. [PubMed] [Google Scholar]
  37. Smith J. W., Vestal D. J., Irwin S. V., Burke T. A., Cheresh D. A. Purification and functional characterization of integrin alpha v beta 5. An adhesion receptor for vitronectin. J Biol Chem. 1990 Jul 5;265(19):11008–11013. [PubMed] [Google Scholar]
  38. Stock J. Signaling across membranes: a one and a two and a... Science. 1996 Oct 18;274(5286):370–371. doi: 10.1126/science.274.5286.370. [DOI] [PubMed] [Google Scholar]
  39. Stupack D. G., Shen C., Wilkins J. A. Induction of alpha v beta 3 integrin-mediated attachment to extracellular matrix in beta 1 integrin (CD29)-negative B cell lines. Exp Cell Res. 1992 Dec;203(2):443–448. doi: 10.1016/0014-4827(92)90019-5. [DOI] [PubMed] [Google Scholar]
  40. Sánchez-Mateos P., Cabañas C., Sánchez-Madrid F. Regulation of integrin function. Semin Cancer Biol. 1996 Jun;7(3):99–109. doi: 10.1006/scbi.1996.0015. [DOI] [PubMed] [Google Scholar]
  41. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weinacker A., Chen A., Agrez M., Cone R. I., Nishimura S., Wayner E., Pytela R., Sheppard D. Role of the integrin alpha v beta 6 in cell attachment to fibronectin. Heterologous expression of intact and secreted forms of the receptor. J Biol Chem. 1994 Mar 4;269(9):6940–6948. [PubMed] [Google Scholar]
  43. Wippler J., Kouns W. C., Schlaeger E. J., Kuhn H., Hadvary P., Steiner B. The integrin alpha IIb-beta 3, platelet glycoprotein IIb-IIIa, can form a functionally active heterodimer complex without the cysteine-rich repeats of the beta 3 subunit. J Biol Chem. 1994 Mar 25;269(12):8754–8761. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES