Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 1;330(Pt 2):903–908. doi: 10.1042/bj3300903

Mouse mutants lacking the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor are impaired in lysosomal enzyme transport: comparison of cation-independent and cation-dependent mannose 6-phosphate receptor-deficient mice.

I Sohar 1, D Sleat 1, C Gong Liu 1, T Ludwig 1, P Lobel 1
PMCID: PMC1219223  PMID: 9480908

Abstract

Two proteins have been implicated in the mannose 6-phosphate-dependent transport of lysosomal enzymes to lysosomes: the 300kDa cation-independent and the 46kDa cation-dependent mannose 6-phosphate receptors (CI- and CD-MPRs). The mammalian CI-MPR also mediates endocytosis and clearance of insulin-like growth factor II (IGF-II). Mutant mice that lack the CD-MPR are viable, mice that lack the CI-MPR accumulate high levels of IGF-II and usually die perinatally, whereas mice that lack both IGF-II and CI-MPR are viable. To investigate the relative roles of the MPRs in the targeting of lysosomal enzymes in vivo, we analysed the effect of a deficiency of either MPR on lysosomal enzyme activities in animals lacking IGF-II. In CD-MPR-deficient mice, most activities were relatively normal in solid tissues and some were marginally elevated in serum. In CI-MPR-deficient mice, some enzyme activities were moderately decreased in solid tissues and multiple enzymes were markedly elevated in serum. Finally, total levels of serum mannose 6-phosphorylated glycoproteins were approximately 45-fold and approximately 15-fold higher than wild type in CI- and CD-MPR-deficient mice respectively, and there were specific differences in the pattern of these proteins when comparing CI- and CD-MPR deficient animals. These results indicate that while lack of the CI-MPR appears to perturb lysosome function to a greater degree than lack of the CD-MPR, each MPR has distinct functions for the targeting of lysosomal enzymes in vivo.

Full Text

The Full Text of this article is available as a PDF (238.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Canfield W. M., Kornfeld S. The chicken liver cation-independent mannose 6-phosphate receptor lacks the high affinity binding site for insulin-like growth factor II. J Biol Chem. 1989 May 5;264(13):7100–7103. [PubMed] [Google Scholar]
  2. Clairmont K. B., Czech M. P. Chicken and Xenopus mannose 6-phosphate receptors fail to bind insulin-like growth factor II. J Biol Chem. 1989 Oct 5;264(28):16390–16392. [PubMed] [Google Scholar]
  3. DeChiara T. M., Robertson E. J., Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991 Feb 22;64(4):849–859. doi: 10.1016/0092-8674(91)90513-x. [DOI] [PubMed] [Google Scholar]
  4. Dittmer F., Pohlmann R., von Figura K. The phosphorylation pattern of oligosaccharides in secreted procathepsin D is glycosylation site-specific and independent of the expression of mannose 6-phosphate receptors. J Biol Chem. 1997 Jan 10;272(2):852–858. doi: 10.1074/jbc.272.2.852. [DOI] [PubMed] [Google Scholar]
  5. Hille-Rehfeld A. Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim Biophys Acta. 1995 Jul 17;1241(2):177–194. doi: 10.1016/0304-4157(95)00004-b. [DOI] [PubMed] [Google Scholar]
  6. Hoflack B., Fujimoto K., Kornfeld S. The interaction of phosphorylated oligosaccharides and lysosomal enzymes with bovine liver cation-dependent mannose 6-phosphate receptor. J Biol Chem. 1987 Jan 5;262(1):123–129. [PubMed] [Google Scholar]
  7. Kasper D., Dittmer F., von Figura K., Pohlmann R. Neither type of mannose 6-phosphate receptor is sufficient for targeting of lysosomal enzymes along intracellular routes. J Cell Biol. 1996 Aug;134(3):615–623. doi: 10.1083/jcb.134.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kornfeld S., Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. doi: 10.1146/annurev.cb.05.110189.002411. [DOI] [PubMed] [Google Scholar]
  9. Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem. 1992;61:307–330. doi: 10.1146/annurev.bi.61.070192.001515. [DOI] [PubMed] [Google Scholar]
  10. Köster A., Saftig P., Matzner U., von Figura K., Peters C., Pohlmann R. Targeted disruption of the M(r) 46,000 mannose 6-phosphate receptor gene in mice results in misrouting of lysosomal proteins. EMBO J. 1993 Dec 15;12(13):5219–5223. doi: 10.1002/j.1460-2075.1993.tb06217.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Köster A., von Figura K., Pohlmann R. Mistargeting of lysosomal enzymes in M(r) 46,000 mannose 6-phosphate receptor-deficient mice is compensated by carbohydrate-specific endocytotic receptors. Eur J Biochem. 1994 Sep 1;224(2):685–689. doi: 10.1111/j.1432-1033.1994.00685.x. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lau M. M., Stewart C. E., Liu Z., Bhatt H., Rotwein P., Stewart C. L. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev. 1994 Dec 15;8(24):2953–2963. doi: 10.1101/gad.8.24.2953. [DOI] [PubMed] [Google Scholar]
  14. Leroy J. G., Ho M. W., MacBrinn M. C., Zielke K., Jacob J., O'Brien J. S. I-cell disease: biochemical studies. Pediatr Res. 1972 Oct;6(10):752–757. doi: 10.1203/00006450-197210000-00002. [DOI] [PubMed] [Google Scholar]
  15. Ludwig T., Eggenschwiler J., Fisher P., D'Ercole A. J., Davenport M. L., Efstratiadis A. Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Dev Biol. 1996 Aug 1;177(2):517–535. doi: 10.1006/dbio.1996.0182. [DOI] [PubMed] [Google Scholar]
  16. Ludwig T., Munier-Lehmann H., Bauer U., Hollinshead M., Ovitt C., Lobel P., Hoflack B. Differential sorting of lysosomal enzymes in mannose 6-phosphate receptor-deficient fibroblasts. EMBO J. 1994 Aug 1;13(15):3430–3437. doi: 10.1002/j.1460-2075.1994.tb06648.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ludwig T., Ovitt C. E., Bauer U., Hollinshead M., Remmler J., Lobel P., Rüther U., Hoflack B. Targeted disruption of the mouse cation-dependent mannose 6-phosphate receptor results in partial missorting of multiple lysosomal enzymes. EMBO J. 1993 Dec 15;12(13):5225–5235. doi: 10.1002/j.1460-2075.1993.tb06218.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ma Z. M., Grubb J. H., Sly W. S. Cloning, sequencing, and functional characterization of the murine 46-kDa mannose 6-phosphate receptor. J Biol Chem. 1991 Jun 5;266(16):10589–10595. [PubMed] [Google Scholar]
  19. Matzner U., von Figura K., Pohlmann R. Expression of the two mannose 6-phosphate receptors is spatially and temporally different during mouse embryogenesis. Development. 1992 Apr;114(4):965–972. doi: 10.1242/dev.114.4.965. [DOI] [PubMed] [Google Scholar]
  20. Munier-Lehmann H., Mauxion F., Bauer U., Lobel P., Hoflack B. Re-expression of the mannose 6-phosphate receptors in receptor-deficient fibroblasts. Complementary function of the two mannose 6-phosphate receptors in lysosomal enzyme targeting. J Biol Chem. 1996 Jun 21;271(25):15166–15174. doi: 10.1074/jbc.271.25.15166. [DOI] [PubMed] [Google Scholar]
  21. Owada M., Neufeld E. F. Is there a mechanism for introducing acid hydrolases into liver lysosomes that is independent of mannose 6-phosphate recognition? Evidence from I-cell disease. Biochem Biophys Res Commun. 1982 Apr 14;105(3):814–820. doi: 10.1016/0006-291x(82)91042-7. [DOI] [PubMed] [Google Scholar]
  22. Pohlmann R., Boeker M. W., von Figura K. The two mannose 6-phosphate receptors transport distinct complements of lysosomal proteins. J Biol Chem. 1995 Nov 10;270(45):27311–27318. doi: 10.1074/jbc.270.45.27311. [DOI] [PubMed] [Google Scholar]
  23. Sheriff S., Du H., Grabowski G. A. Characterization of lysosomal acid lipase by site-directed mutagenesis and heterologous expression. J Biol Chem. 1995 Nov 17;270(46):27766–27772. doi: 10.1074/jbc.270.46.27766. [DOI] [PubMed] [Google Scholar]
  24. Sleat D. E., Lobel P. Ligand binding specificities of the two mannose 6-phosphate receptors. J Biol Chem. 1997 Jan 10;272(2):731–738. doi: 10.1074/jbc.272.2.731. [DOI] [PubMed] [Google Scholar]
  25. Sleat D. E., Sohar I., Lackland H., Majercak J., Lobel P. Rat brain contains high levels of mannose-6-phosphorylated glycoproteins including lysosomal enzymes and palmitoyl-protein thioesterase, an enzyme implicated in infantile neuronal lipofuscinosis. J Biol Chem. 1996 Aug 9;271(32):19191–19198. doi: 10.1074/jbc.271.32.19191. [DOI] [PubMed] [Google Scholar]
  26. Stein M., Zijderhand-Bleekemolen J. E., Geuze H., Hasilik A., von Figura K. Mr 46,000 mannose 6-phosphate specific receptor: its role in targeting of lysosomal enzymes. EMBO J. 1987 Sep;6(9):2677–2681. doi: 10.1002/j.1460-2075.1987.tb02559.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tong P. Y., Tollefsen S. E., Kornfeld S. The cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II. J Biol Chem. 1988 Feb 25;263(6):2585–2588. [PubMed] [Google Scholar]
  28. Waheed A., Pohlmann R., Hasilik A., von Figura K., van Elsen A., Leroy J. G. Deficiency of UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase in organs of I-cell patients. Biochem Biophys Res Commun. 1982 Apr 14;105(3):1052–1058. doi: 10.1016/0006-291x(82)91076-2. [DOI] [PubMed] [Google Scholar]
  29. Wang Z. Q., Fung M. R., Barlow D. P., Wagner E. F. Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature. 1994 Dec 1;372(6505):464–467. doi: 10.1038/372464a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES