Abstract
Two proteins have been implicated in the mannose 6-phosphate-dependent transport of lysosomal enzymes to lysosomes: the 300kDa cation-independent and the 46kDa cation-dependent mannose 6-phosphate receptors (CI- and CD-MPRs). The mammalian CI-MPR also mediates endocytosis and clearance of insulin-like growth factor II (IGF-II). Mutant mice that lack the CD-MPR are viable, mice that lack the CI-MPR accumulate high levels of IGF-II and usually die perinatally, whereas mice that lack both IGF-II and CI-MPR are viable. To investigate the relative roles of the MPRs in the targeting of lysosomal enzymes in vivo, we analysed the effect of a deficiency of either MPR on lysosomal enzyme activities in animals lacking IGF-II. In CD-MPR-deficient mice, most activities were relatively normal in solid tissues and some were marginally elevated in serum. In CI-MPR-deficient mice, some enzyme activities were moderately decreased in solid tissues and multiple enzymes were markedly elevated in serum. Finally, total levels of serum mannose 6-phosphorylated glycoproteins were approximately 45-fold and approximately 15-fold higher than wild type in CI- and CD-MPR-deficient mice respectively, and there were specific differences in the pattern of these proteins when comparing CI- and CD-MPR deficient animals. These results indicate that while lack of the CI-MPR appears to perturb lysosome function to a greater degree than lack of the CD-MPR, each MPR has distinct functions for the targeting of lysosomal enzymes in vivo.
Full Text
The Full Text of this article is available as a PDF (238.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Canfield W. M., Kornfeld S. The chicken liver cation-independent mannose 6-phosphate receptor lacks the high affinity binding site for insulin-like growth factor II. J Biol Chem. 1989 May 5;264(13):7100–7103. [PubMed] [Google Scholar]
- Clairmont K. B., Czech M. P. Chicken and Xenopus mannose 6-phosphate receptors fail to bind insulin-like growth factor II. J Biol Chem. 1989 Oct 5;264(28):16390–16392. [PubMed] [Google Scholar]
- DeChiara T. M., Robertson E. J., Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991 Feb 22;64(4):849–859. doi: 10.1016/0092-8674(91)90513-x. [DOI] [PubMed] [Google Scholar]
- Dittmer F., Pohlmann R., von Figura K. The phosphorylation pattern of oligosaccharides in secreted procathepsin D is glycosylation site-specific and independent of the expression of mannose 6-phosphate receptors. J Biol Chem. 1997 Jan 10;272(2):852–858. doi: 10.1074/jbc.272.2.852. [DOI] [PubMed] [Google Scholar]
- Hille-Rehfeld A. Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim Biophys Acta. 1995 Jul 17;1241(2):177–194. doi: 10.1016/0304-4157(95)00004-b. [DOI] [PubMed] [Google Scholar]
- Hoflack B., Fujimoto K., Kornfeld S. The interaction of phosphorylated oligosaccharides and lysosomal enzymes with bovine liver cation-dependent mannose 6-phosphate receptor. J Biol Chem. 1987 Jan 5;262(1):123–129. [PubMed] [Google Scholar]
- Kasper D., Dittmer F., von Figura K., Pohlmann R. Neither type of mannose 6-phosphate receptor is sufficient for targeting of lysosomal enzymes along intracellular routes. J Cell Biol. 1996 Aug;134(3):615–623. doi: 10.1083/jcb.134.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornfeld S., Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. doi: 10.1146/annurev.cb.05.110189.002411. [DOI] [PubMed] [Google Scholar]
- Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem. 1992;61:307–330. doi: 10.1146/annurev.bi.61.070192.001515. [DOI] [PubMed] [Google Scholar]
- Köster A., Saftig P., Matzner U., von Figura K., Peters C., Pohlmann R. Targeted disruption of the M(r) 46,000 mannose 6-phosphate receptor gene in mice results in misrouting of lysosomal proteins. EMBO J. 1993 Dec 15;12(13):5219–5223. doi: 10.1002/j.1460-2075.1993.tb06217.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Köster A., von Figura K., Pohlmann R. Mistargeting of lysosomal enzymes in M(r) 46,000 mannose 6-phosphate receptor-deficient mice is compensated by carbohydrate-specific endocytotic receptors. Eur J Biochem. 1994 Sep 1;224(2):685–689. doi: 10.1111/j.1432-1033.1994.00685.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lau M. M., Stewart C. E., Liu Z., Bhatt H., Rotwein P., Stewart C. L. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev. 1994 Dec 15;8(24):2953–2963. doi: 10.1101/gad.8.24.2953. [DOI] [PubMed] [Google Scholar]
- Leroy J. G., Ho M. W., MacBrinn M. C., Zielke K., Jacob J., O'Brien J. S. I-cell disease: biochemical studies. Pediatr Res. 1972 Oct;6(10):752–757. doi: 10.1203/00006450-197210000-00002. [DOI] [PubMed] [Google Scholar]
- Ludwig T., Eggenschwiler J., Fisher P., D'Ercole A. J., Davenport M. L., Efstratiadis A. Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Dev Biol. 1996 Aug 1;177(2):517–535. doi: 10.1006/dbio.1996.0182. [DOI] [PubMed] [Google Scholar]
- Ludwig T., Munier-Lehmann H., Bauer U., Hollinshead M., Ovitt C., Lobel P., Hoflack B. Differential sorting of lysosomal enzymes in mannose 6-phosphate receptor-deficient fibroblasts. EMBO J. 1994 Aug 1;13(15):3430–3437. doi: 10.1002/j.1460-2075.1994.tb06648.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludwig T., Ovitt C. E., Bauer U., Hollinshead M., Remmler J., Lobel P., Rüther U., Hoflack B. Targeted disruption of the mouse cation-dependent mannose 6-phosphate receptor results in partial missorting of multiple lysosomal enzymes. EMBO J. 1993 Dec 15;12(13):5225–5235. doi: 10.1002/j.1460-2075.1993.tb06218.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma Z. M., Grubb J. H., Sly W. S. Cloning, sequencing, and functional characterization of the murine 46-kDa mannose 6-phosphate receptor. J Biol Chem. 1991 Jun 5;266(16):10589–10595. [PubMed] [Google Scholar]
- Matzner U., von Figura K., Pohlmann R. Expression of the two mannose 6-phosphate receptors is spatially and temporally different during mouse embryogenesis. Development. 1992 Apr;114(4):965–972. doi: 10.1242/dev.114.4.965. [DOI] [PubMed] [Google Scholar]
- Munier-Lehmann H., Mauxion F., Bauer U., Lobel P., Hoflack B. Re-expression of the mannose 6-phosphate receptors in receptor-deficient fibroblasts. Complementary function of the two mannose 6-phosphate receptors in lysosomal enzyme targeting. J Biol Chem. 1996 Jun 21;271(25):15166–15174. doi: 10.1074/jbc.271.25.15166. [DOI] [PubMed] [Google Scholar]
- Owada M., Neufeld E. F. Is there a mechanism for introducing acid hydrolases into liver lysosomes that is independent of mannose 6-phosphate recognition? Evidence from I-cell disease. Biochem Biophys Res Commun. 1982 Apr 14;105(3):814–820. doi: 10.1016/0006-291x(82)91042-7. [DOI] [PubMed] [Google Scholar]
- Pohlmann R., Boeker M. W., von Figura K. The two mannose 6-phosphate receptors transport distinct complements of lysosomal proteins. J Biol Chem. 1995 Nov 10;270(45):27311–27318. doi: 10.1074/jbc.270.45.27311. [DOI] [PubMed] [Google Scholar]
- Sheriff S., Du H., Grabowski G. A. Characterization of lysosomal acid lipase by site-directed mutagenesis and heterologous expression. J Biol Chem. 1995 Nov 17;270(46):27766–27772. doi: 10.1074/jbc.270.46.27766. [DOI] [PubMed] [Google Scholar]
- Sleat D. E., Lobel P. Ligand binding specificities of the two mannose 6-phosphate receptors. J Biol Chem. 1997 Jan 10;272(2):731–738. doi: 10.1074/jbc.272.2.731. [DOI] [PubMed] [Google Scholar]
- Sleat D. E., Sohar I., Lackland H., Majercak J., Lobel P. Rat brain contains high levels of mannose-6-phosphorylated glycoproteins including lysosomal enzymes and palmitoyl-protein thioesterase, an enzyme implicated in infantile neuronal lipofuscinosis. J Biol Chem. 1996 Aug 9;271(32):19191–19198. doi: 10.1074/jbc.271.32.19191. [DOI] [PubMed] [Google Scholar]
- Stein M., Zijderhand-Bleekemolen J. E., Geuze H., Hasilik A., von Figura K. Mr 46,000 mannose 6-phosphate specific receptor: its role in targeting of lysosomal enzymes. EMBO J. 1987 Sep;6(9):2677–2681. doi: 10.1002/j.1460-2075.1987.tb02559.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tong P. Y., Tollefsen S. E., Kornfeld S. The cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II. J Biol Chem. 1988 Feb 25;263(6):2585–2588. [PubMed] [Google Scholar]
- Waheed A., Pohlmann R., Hasilik A., von Figura K., van Elsen A., Leroy J. G. Deficiency of UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase in organs of I-cell patients. Biochem Biophys Res Commun. 1982 Apr 14;105(3):1052–1058. doi: 10.1016/0006-291x(82)91076-2. [DOI] [PubMed] [Google Scholar]
- Wang Z. Q., Fung M. R., Barlow D. P., Wagner E. F. Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature. 1994 Dec 1;372(6505):464–467. doi: 10.1038/372464a0. [DOI] [PubMed] [Google Scholar]