Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 1;330(Pt 2):909–914. doi: 10.1042/bj3300909

A variant of the bovine noradrenaline transporter reveals the importance of the C-terminal region for correct targeting to the membrane and functional expression.

L D Burton 1, A G Kippenberger 1, B Lingen 1, M Brüss 1, H Bönisch 1, D L Christie 1
PMCID: PMC1219224  PMID: 9480909

Abstract

We have characterized a cDNA clone which encodes a variant (bNAT2) of the bovine noradrenaline transporter. This cDNA differs from the previously identified bovine noradrenaline transporter (bNAT1) in the sequence encoding part of the cytoplasmic-facing C-terminus and the 3'-untranslated region. The bNAT1 and bNAT2 cDNA clones are encoded by a 5.8 and 3.6 kb mRNA species respectively. The bNAT1 and bNAT2 proteins, which are identical apart from their C-terminal 31 and 18 residues, were stably expressed in HEK293 cells. Cells expressing bNAT1 showed a high level of desipramine-sensitive [3H]noradrenaline uptake activity, whereas no activity was present in bNAT2 cells. The bNAT1 and bNAT2 proteins were present as major 80 and 50 kDa species respectively. Cells expressing bNAT1 showed strong immunostaining of the plasma membrane, whereas bNAT2 was present in the endoplasmic reticulum/Golgi region. Treatment of membrane samples from bNAT1 cells with peptide N-glycosidase F resulted in the formation of a predominantly 50 kDa species, but little effect was observed after similar treatment of bNAT2 cell membranes. These results indicate that bNAT2 is retained in the endoplasmic reticulum and that the glycosylation of this variant differs from that of bNAT1. The characterization of bNAT2 and its comparison with bNAT1 highlight the importance of the cytoplasmic-facing C-terminus for the intracellular trafficking of neurotransmitter transporters.

Full Text

The Full Text of this article is available as a PDF (319.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amara S. G., Kuhar M. J. Neurotransmitter transporters: recent progress. Annu Rev Neurosci. 1993;16:73–93. doi: 10.1146/annurev.ne.16.030193.000445. [DOI] [PubMed] [Google Scholar]
  2. Bendahan A., Kanner B. I. Identification of domains of a cloned rat brain GABA transporter which are not required for its functional expression. FEBS Lett. 1993 Feb 22;318(1):41–44. doi: 10.1016/0014-5793(93)81323-r. [DOI] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Galli A., DeFelice L. J., Duke B. J., Moore K. R., Blakely R. D. Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. J Exp Biol. 1995 Oct;198(Pt 10):2197–2212. doi: 10.1242/jeb.198.10.2197. [DOI] [PubMed] [Google Scholar]
  5. Guastella J., Nelson N., Nelson H., Czyzyk L., Keynan S., Miedel M. C., Davidson N., Lester H. A., Kanner B. I. Cloning and expression of a rat brain GABA transporter. Science. 1990 Sep 14;249(4974):1303–1306. doi: 10.1126/science.1975955. [DOI] [PubMed] [Google Scholar]
  6. Jursky F., Tamura S., Tamura A., Mandiyan S., Nelson H., Nelson N. Structure, function and brain localization of neurotransmitter transporters. J Exp Biol. 1994 Nov;196:283–295. doi: 10.1242/jeb.196.1.283. [DOI] [PubMed] [Google Scholar]
  7. Kanner B. I. Sodium-coupled neurotransmitter transport: structure, function and regulation. J Exp Biol. 1994 Nov;196:237–249. doi: 10.1242/jeb.196.1.237. [DOI] [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lingen B., Brüss M., Bönisch H. Cloning and expression of the bovine sodium- and chloride-dependent noradrenaline transporter. FEBS Lett. 1994 Apr 11;342(3):235–238. doi: 10.1016/0014-5793(94)80508-3. [DOI] [PubMed] [Google Scholar]
  10. Lorang D., Amara S. G., Simerly R. B. Cell-type-specific expression of catecholamine transporters in the rat brain. J Neurosci. 1994 Aug;14(8):4903–4914. doi: 10.1523/JNEUROSCI.14-08-04903.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mabjeesh N. J., Kanner B. I. Neither amino nor carboxyl termini are required for function of the sodium- and chloride-coupled gamma-aminobutyric acid transporter from rat brain. J Biol Chem. 1992 Feb 5;267(4):2563–2568. [PubMed] [Google Scholar]
  12. Melikian H. E., Ramamoorthy S., Tate C. G., Blakely R. D. Inability to N-glycosylate the human norepinephrine transporter reduces protein stability, surface trafficking, and transport activity but not ligand recognition. Mol Pharmacol. 1996 Aug;50(2):266–276. [PubMed] [Google Scholar]
  13. Nelson N., Lill H. Porters and neurotransmitter transporters. J Exp Biol. 1994 Nov;196:213–228. doi: 10.1242/jeb.196.1.213. [DOI] [PubMed] [Google Scholar]
  14. Nguyen T. T., Amara S. G. N-linked oligosaccharides are required for cell surface expression of the norepinephrine transporter but do not influence substrate or inhibitor recognition. J Neurochem. 1996 Aug;67(2):645–655. doi: 10.1046/j.1471-4159.1996.67020645.x. [DOI] [PubMed] [Google Scholar]
  15. Olivares L., Aragón C., Giménez C., Zafra F. Carboxyl terminus of the glycine transporter GLYT1 is necessary for correct processing of the protein. J Biol Chem. 1994 Nov 11;269(45):28400–28404. [PubMed] [Google Scholar]
  16. Olivares L., Aragón C., Giménez C., Zafra F. The role of N-glycosylation in the targeting and activity of the GLYT1 glycine transporter. J Biol Chem. 1995 Apr 21;270(16):9437–9442. doi: 10.1074/jbc.270.16.9437. [DOI] [PubMed] [Google Scholar]
  17. Pacholczyk T., Blakely R. D., Amara S. G. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature. 1991 Mar 28;350(6316):350–354. doi: 10.1038/350350a0. [DOI] [PubMed] [Google Scholar]
  18. Perego C., Bulbarelli A., Longhi R., Caimi M., Villa A., Caplan M. J., Pietrini G. Sorting of two polytopic proteins, the gamma-aminobutyric acid and betaine transporters, in polarized epithelial cells. J Biol Chem. 1997 Mar 7;272(10):6584–6592. doi: 10.1074/jbc.272.10.6584. [DOI] [PubMed] [Google Scholar]
  19. Po J. L., Mazer B., Jensen G. S. The L-selectin antibody FMC46 mediates rapid, transient increase in intracellular calcium in human peripheral blood mononuclear cells and Daudi lymphoma cells. Biochem Biophys Res Commun. 1995 Dec 26;217(3):1145–1150. doi: 10.1006/bbrc.1995.2888. [DOI] [PubMed] [Google Scholar]
  20. Ramamoorthy S., Prasad P. D., Kulanthaivel P., Leibach F. H., Blakely R. D., Ganapathy V. Expression of a cocaine-sensitive norepinephrine transporter in the human placental syncytiotrophoblast. Biochemistry. 1993 Feb 9;32(5):1346–1353. doi: 10.1021/bi00056a021. [DOI] [PubMed] [Google Scholar]
  21. Richards M. L., Sadee W. Human neuroblastoma cell lines as models of catechol uptake. Brain Res. 1986 Oct 1;384(1):132–137. doi: 10.1016/0006-8993(86)91228-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES