Abstract
Hepatocytes show a Na+-dependent nucleoside transport activity that is kinetically heterogeneous and consistent with the expression of at least two independent concentrative Na+-coupled nucleoside transport systems (Mercader et al. Biochem. J. 317, 835-842, 1996). So far, only a single nucleoside carrier-related cDNA (SPNT) has been isolated from liver cells (Che et al. J. Biol. Chem. 270, 13596-13599, 1995). This cDNA presumably encodes a plasma membrane protein responsible for Na+-dependent purine nucleoside transport activity. Thus, the liver must express, at least, a second nucleoside transporter which should be pyrimidine-preferring. Homology cloning using RT-PCR revealed that a second isoform is indeed present in liver. This second isoform turned out to be identical to the 'epithelial-specific isoform' called cNT1, which shows in fact high specificity for pyrimidine nucleosides. Although cNT1 mRNA is present at lower amounts than SPNT mRNA, the amounts of cNT1 protein, when measured using isoform-specific polyclonal antibodies, were even higher than the SPNT protein levels. Moreover, partially purified basolateral plasma membrane vesicles from liver were enriched in the SPNT but not in the cNT1 protein, which suggests that the subcellular localization of these carrier proteins is different. SPNT and cNT1 protein amounts in crude membrane extracts from 6 h-regenerating rat livers are higher than in the preparations from sham-operated controls (3.5- and 2-fold, respectively). These results suggest that liver parenchymal cells express at least two different isoforms of concentrative nucleoside carriers, the cNT1 and SPNT proteins, which show differential regulation and subcellular localization.
Full Text
The Full Text of this article is available as a PDF (299.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aloy P., Cedano J., Oliva B., Avilés F. X., Querol E. 'TransMem': a neural network implemented in Excel spreadsheets for predicting transmembrane domains of proteins. Comput Appl Biosci. 1997 Jun;13(3):231–234. doi: 10.1093/bioinformatics/13.3.231. [DOI] [PubMed] [Google Scholar]
- Anderson C. M., Xiong W., Young J. D., Cass C. E., Parkinson F. E. Demonstration of the existence of mRNAs encoding N1/cif and N2/cit sodium/nucleoside cotransporters in rat brain. Brain Res Mol Brain Res. 1996 Dec;42(2):358–361. doi: 10.1016/s0169-328x(96)00244-6. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Che M., Nishida T., Gatmaitan Z., Arias I. M. A nucleoside transporter is functionally linked to ectonucleotidases in rat liver canalicular membrane. J Biol Chem. 1992 May 15;267(14):9684–9688. [PubMed] [Google Scholar]
- Che M., Ortiz D. F., Arias I. M. Primary structure and functional expression of a cDNA encoding the bile canalicular, purine-specific Na(+)-nucleoside cotransporter. J Biol Chem. 1995 Jun 9;270(23):13596–13599. doi: 10.1074/jbc.270.23.13596. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Clotet J., Cedano J., Querol E. An Excel spreadsheet computer program combining algorithms for prediction of protein structural characteristics. Comput Appl Biosci. 1994 Sep;10(5):495–500. doi: 10.1093/bioinformatics/10.5.495. [DOI] [PubMed] [Google Scholar]
- Felipe A., Ferrer-Martínez A., Casado F. J., Pastor-Anglada M. Expression of sodium-dependent purine nucleoside carrier (SPNT) mRNA correlates with nucleoside transport activity in rat liver. Biochem Biophys Res Commun. 1997 Apr 17;233(2):572–575. doi: 10.1006/bbrc.1997.6498. [DOI] [PubMed] [Google Scholar]
- Felipe A., Knittle T. J., Doyle K. L., Tamkun M. M. Primary structure and differential expression during development and pregnancy of a novel voltage-gated sodium channel in the mouse. J Biol Chem. 1994 Dec 2;269(48):30125–30131. [PubMed] [Google Scholar]
- Ferrer-Martínez A., Felipe A., Casado E. J., Pastor-Anglada M. Differential regulation of Na(+)-K(+)-ATPase in the obese Zucker rat. Am J Physiol. 1996 Nov;271(5 Pt 2):R1123–R1129. doi: 10.1152/ajpregu.1996.271.5.R1123. [DOI] [PubMed] [Google Scholar]
- Gomez-Angelats M., del Santo B., Mercader J., Ferrer-Martinez A., Felipe A., Casado J., Pastor-Anglada M. Hormonal regulation of concentrative nucleoside transport in liver parenchymal cells. Biochem J. 1996 Feb 1;313(Pt 3):915–920. doi: 10.1042/bj3130915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith D. A., Jarvis S. M. Nucleoside and nucleobase transport systems of mammalian cells. Biochim Biophys Acta. 1996 Oct 29;1286(3):153–181. doi: 10.1016/s0304-4157(96)00008-1. [DOI] [PubMed] [Google Scholar]
- Gutierrez M. M., Giacomini K. M. Substrate selectivity, potential sensitivity and stoichiometry of Na(+)-nucleoside transport in brush border membrane vesicles from human kidney. Biochim Biophys Acta. 1993 Jul 4;1149(2):202–208. doi: 10.1016/0005-2736(93)90202-b. [DOI] [PubMed] [Google Scholar]
- Huang Q. Q., Harvey C. M., Paterson A. R., Cass C. E., Young J. D. Functional expression of Na(+)-dependent nucleoside transport systems of rat intestine in isolated oocytes of Xenopus laevis. Demonstration that rat jejunum expresses the purine-selective system N1 (cif) and a second, novel system N3 having broad specificity for purine and pyrimidine nucleosides. J Biol Chem. 1993 Sep 25;268(27):20613–20619. [PubMed] [Google Scholar]
- Huang Q. Q., Yao S. Y., Ritzel M. W., Paterson A. R., Cass C. E., Young J. D. Cloning and functional expression of a complementary DNA encoding a mammalian nucleoside transport protein. J Biol Chem. 1994 Jul 8;269(27):17757–17760. [PubMed] [Google Scholar]
- Jakobs E. S., Van Os-Corby D. J., Paterson A. R. Expression of sodium-linked nucleoside transport activity in monolayer cultures of IEC-6 intestinal epithelial cells. J Biol Chem. 1990 Dec 25;265(36):22210–22216. [PubMed] [Google Scholar]
- Jarvis S. M., Griffith D. A. Expression of the rabbit intestinal N2 Na+/nucleoside transporter in Xenopus laevis oocytes. Biochem J. 1991 Sep 1;278(Pt 2):605–607. doi: 10.1042/bj2780605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Mercader J., Gomez-Angelats M., del Santo B., Casado F. J., Felipe A., Pastor-Anglada M. Nucleoside uptake in rat liver parenchymal cells. Biochem J. 1996 Aug 1;317(Pt 3):835–842. doi: 10.1042/bj3170835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreno F., Pastor-Anglada M., Hollenberg M. D., Soley M. Effects of epidermal growth factor (urogastrone) on gluconeogenesis, glucose oxidation, and glycogen synthesis in isolated rat hepatocytes. Biochem Cell Biol. 1989 Oct;67(10):724–729. doi: 10.1139/o89-108. [DOI] [PubMed] [Google Scholar]
- Moseley R. H., Jarose S., Permoad P. Adenosine transport in rat liver plasma membrane vesicles. Am J Physiol. 1991 Nov;261(5 Pt 1):G716–G722. doi: 10.1152/ajpgi.1991.261.5.G716. [DOI] [PubMed] [Google Scholar]
- Pastor-Anglada M., Remesar X., Bourdel G. Alanine uptake by liver at midpregnancy in rats. Am J Physiol. 1987 Mar;252(3 Pt 1):E408–E413. doi: 10.1152/ajpendo.1987.252.3.E408. [DOI] [PubMed] [Google Scholar]
- Qian N. X., Pastor-Anglada M., Englesberg E. Evidence for coordinate regulation of the A system for amino acid transport and the mRNA for the alpha 1 subunit of the Na+,K(+)-ATPase gene in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3416–3420. doi: 10.1073/pnas.88.8.3416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rost B., Casadio R., Fariselli P., Sander C. Transmembrane helices predicted at 95% accuracy. Protein Sci. 1995 Mar;4(3):521–533. doi: 10.1002/pro.5560040318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruiz-Montasell B., Gómez-Angelats M., Casado F. J., Felipe A., McGivan J. D., Pastor-Anglada M. Evidence for a regulatory protein involved in the increased activity of system A for neutral amino acid transport in osmotically stressed mammalian cells. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9569–9573. doi: 10.1073/pnas.91.20.9569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruiz-Montasell B., Javier Casado F., Felipe A., Pastor-Anglada M. Uridine transport in basolateral plasma membrane vesicles from rat liver. J Membr Biol. 1992 Jun;128(3):227–233. doi: 10.1007/BF00231815. [DOI] [PubMed] [Google Scholar]
- Ruiz-Montasell B., Martinez-Mas J. V., Enrich C., Casado F. J., Felipe A., Pastor-Anglada M. Early induction of Na(+)-dependent uridine uptake in the regenerating rat liver. FEBS Lett. 1993 Jan 18;316(1):85–88. doi: 10.1016/0014-5793(93)81741-h. [DOI] [PubMed] [Google Scholar]
- Ruiz B., Felipe A., Casado J., Pastor-Anglada M. Amino acid uptake by liver of genetically obese Zucker rats. Biochem J. 1991 Dec 1;280(Pt 2):367–372. doi: 10.1042/bj2800367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams T. C., Doherty A. J., Griffith D. A., Jarvis S. M. Characterization of sodium-dependent and sodium-independent nucleoside transport systems in rabbit brush-border and basolateral plasma-membrane vesicles from the renal outer cortex. Biochem J. 1989 Nov 15;264(1):223–231. doi: 10.1042/bj2640223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams T. C., Jarvis S. M. Multiple sodium-dependent nucleoside transport systems in bovine renal brush-border membrane vesicles. Biochem J. 1991 Feb 15;274(Pt 1):27–33. doi: 10.1042/bj2740027. [DOI] [PMC free article] [PubMed] [Google Scholar]