Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 1;330(Pt 2):1015–1021. doi: 10.1042/bj3301015

Evidence for the intracellular location of chloride channel (ClC)-type proteins: co-localization of ClC-6a and ClC-6c with the sarco/endoplasmic-reticulum Ca2+ pump SERCA2b.

G Buyse 1, D Trouet 1, T Voets 1, L Missiaen 1, G Droogmans 1, B Nilius 1, J Eggermont 1
PMCID: PMC1219239  PMID: 9480924

Abstract

Chloride channel protein (ClC)-6a and ClC-6c, a kidney-specific splice variant with a truncated C-terminus, are proteins that belong structurally to the family of voltage-dependent chloride channels. Attempts to characterize functionally ClC-6a or ClC-6c in Xenopus oocytes have so far been negative. Similarly, expression of both ClC-6 isoforms in mammalian cells failed to provide functional information. One possible explanation of these negative results is that ClC-6 is an intracellular chloride channel rather than being located in the plasma membrane. We therefore studied the subcellular location of ClC-6 isoforms by transiently transfecting COS and CHO cells with epitope-tagged versions of ClC-6a and ClC-6c. Confocal imaging of transfected cells revealed for both ClC-6 isoforms an intracellular distribution pattern that clearly differed from the peripheral location of CD2, a plasma-membrane glycoprotein. Furthermore, dual-labelling experiments of COS cells co-transfected with ClC-6a or -6c and the sarco/endoplasmic-reticulum Ca2+ pump (SERCA2b) indicated that the ClC-6 isoforms co-localized with the SERCA2b Ca2+ pump. Thus ClC-6a and ClC-6c are intracellular membrane proteins, most likely residing in the endoplasmic reticulum. In view of their structural similarity to proven chloride channels, ClC-6 isoforms are molecular candidates for intracellular chloride channels.

Full Text

The Full Text of this article is available as a PDF (625.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi S., Uchida S., Ito H., Hata M., Hiroe M., Marumo F., Sasaki S. Two isoforms of a chloride channel predominantly expressed in thick ascending limb of Henle's loop and collecting ducts of rat kidney. J Biol Chem. 1994 Jul 1;269(26):17677–17683. [PubMed] [Google Scholar]
  2. Astill D. S., Rychkov G., Clarke J. D., Hughes B. P., Roberts M. L., Bretag A. H. Characteristics of skeletal muscle chloride channel C1C-1 and point mutant R304E expressed in Sf-9 insect cells. Biochim Biophys Acta. 1996 Apr 26;1280(2):178–186. doi: 10.1016/0005-2736(95)00281-2. [DOI] [PubMed] [Google Scholar]
  3. Barasch J., Kiss B., Prince A., Saiman L., Gruenert D., al-Awqati Q. Defective acidification of intracellular organelles in cystic fibrosis. Nature. 1991 Jul 4;352(6330):70–73. doi: 10.1038/352070a0. [DOI] [PubMed] [Google Scholar]
  4. Bauer C. K., Steinmeyer K., Schwarz J. R., Jentsch T. J. Completely functional double-barreled chloride channel expressed from a single Torpedo cDNA. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11052–11056. doi: 10.1073/pnas.88.24.11052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bosse E., Bottlender R., Kleppisch T., Hescheler J., Welling A., Hofmann F., Flockerzi V. Stable and functional expression of the calcium channel alpha 1 subunit from smooth muscle in somatic cell lines. EMBO J. 1992 Jun;11(6):2033–2038. doi: 10.1002/j.1460-2075.1992.tb05260.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brandt S., Jentsch T. J. ClC-6 and ClC-7 are two novel broadly expressed members of the CLC chloride channel family. FEBS Lett. 1995 Dec 11;377(1):15–20. doi: 10.1016/0014-5793(95)01298-2. [DOI] [PubMed] [Google Scholar]
  7. Buyse G., Voets T., Tytgat J., De Greef C., Droogmans G., Nilius B., Eggermont J. Expression of human pICln and ClC-6 in Xenopus oocytes induces an identical endogenous chloride conductance. J Biol Chem. 1997 Feb 7;272(6):3615–3621. doi: 10.1074/jbc.272.6.3615. [DOI] [PubMed] [Google Scholar]
  8. Carew M. A., Thorn P. Identification of ClC-2-like chloride currents in pig pancreatic acinar cells. Pflugers Arch. 1996 Nov-Dec;433(1-2):84–90. doi: 10.1007/s004240050252. [DOI] [PubMed] [Google Scholar]
  9. Chen T. Y., Miller C. Nonequilibrium gating and voltage dependence of the ClC-0 Cl- channel. J Gen Physiol. 1996 Oct;108(4):237–250. doi: 10.1085/jgp.108.4.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chu S., Murray C. B., Liu M. M., Zeitlin P. L. A short CIC-2 mRNA transcript is produced by exon skipping. Nucleic Acids Res. 1996 Sep 1;24(17):3453–3457. doi: 10.1093/nar/24.17.3453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eggermont J. A., Wuytack F., De Jaegere S., Nelles L., Casteels R. Evidence for two isoforms of the endoplasmic-reticulum Ca2+ pump in pig smooth muscle. Biochem J. 1989 Jun 15;260(3):757–761. doi: 10.1042/bj2600757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eggermont J., Buyse G., Voets T., Tytgat J., De Smedt H., Droogmans G., Nilius B. Alternative splicing of ClC-6 (a member of the CIC chloride-channel family) transcripts generates three truncated isoforms one of which, ClC-6c, is kidney-specific. Biochem J. 1997 Jul 1;325(Pt 1):269–276. doi: 10.1042/bj3250269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evan G. I., Lewis G. K., Ramsay G., Bishop J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. doi: 10.1128/mcb.5.12.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981 Jan;23(1):175–182. doi: 10.1016/0092-8674(81)90282-8. [DOI] [PubMed] [Google Scholar]
  15. Hechenberger M., Schwappach B., Fischer W. N., Frommer W. B., Jentsch T. J., Steinmeyer K. A family of putative chloride channels from Arabidopsis and functional complementation of a yeast strain with a CLC gene disruption. J Biol Chem. 1996 Dec 27;271(52):33632–33638. doi: 10.1074/jbc.271.52.33632. [DOI] [PubMed] [Google Scholar]
  16. Jentsch T. J. Chloride channels: a molecular perspective. Curr Opin Neurobiol. 1996 Jun;6(3):303–310. doi: 10.1016/s0959-4388(96)80112-7. [DOI] [PubMed] [Google Scholar]
  17. Jentsch T. J., Günther W. Chloride channels: an emerging molecular picture. Bioessays. 1997 Feb;19(2):117–126. doi: 10.1002/bies.950190206. [DOI] [PubMed] [Google Scholar]
  18. Kourie J. I., Laver D. R., Junankar P. R., Gage P. W., Dulhunty A. F. Characteristics of two types of chloride channel in sarcoplasmic reticulum vesicles from rabbit skeletal muscle. Biophys J. 1996 Jan;70(1):202–221. doi: 10.1016/S0006-3495(96)79564-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kürz L., Wagner S., George A. L., Jr, Rüdel R. Probing the major skeletal muscle chloride channel with Zn2+ and other sulfhydryl-reactive compounds. Pflugers Arch. 1997 Jan;433(3):357–363. doi: 10.1007/s004240050288. [DOI] [PubMed] [Google Scholar]
  20. Landry D., Sullivan S., Nicolaides M., Redhead C., Edelman A., Field M., al-Awqati Q., Edwards J. Molecular cloning and characterization of p64, a chloride channel protein from kidney microsomes. J Biol Chem. 1993 Jul 15;268(20):14948–14955. [PubMed] [Google Scholar]
  21. Ludewig U., Pusch M., Jentsch T. J. Two physically distinct pores in the dimeric ClC-0 chloride channel. Nature. 1996 Sep 26;383(6598):340–343. doi: 10.1038/383340a0. [DOI] [PubMed] [Google Scholar]
  22. Middleton R. E., Pheasant D. J., Miller C. Homodimeric architecture of a ClC-type chloride ion channel. Nature. 1996 Sep 26;383(6598):337–340. doi: 10.1038/383337a0. [DOI] [PubMed] [Google Scholar]
  23. Middleton R. E., Pheasant D. J., Miller C. Purification, reconstitution, and subunit composition of a voltage-gated chloride channel from Torpedo electroplax. Biochemistry. 1994 Nov 15;33(45):13189–13198. doi: 10.1021/bi00249a005. [DOI] [PubMed] [Google Scholar]
  24. Morier N., Sauvé R. Analysis of a novel double-barreled anion channel from rat liver rough endoplasmic reticulum. Biophys J. 1994 Aug;67(2):590–602. doi: 10.1016/S0006-3495(94)80519-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Paulmichl M., Li Y., Wickman K., Ackerman M., Peralta E., Clapham D. New mammalian chloride channel identified by expression cloning. Nature. 1992 Mar 19;356(6366):238–241. doi: 10.1038/356238a0. [DOI] [PubMed] [Google Scholar]
  26. Prince L. S., Workman R. B., Jr, Marchase R. B. Rapid endocytosis of the cystic fibrosis transmembrane conductance regulator chloride channel. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5192–5196. doi: 10.1073/pnas.91.11.5192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pusch M., Ludewig U., Rehfeldt A., Jentsch T. J. Gating of the voltage-dependent chloride channel CIC-0 by the permeant anion. Nature. 1995 Feb 9;373(6514):527–531. doi: 10.1038/373527a0. [DOI] [PubMed] [Google Scholar]
  28. Pusch M., Steinmeyer K., Jentsch T. J. Low single channel conductance of the major skeletal muscle chloride channel, ClC-1. Biophys J. 1994 Jan;66(1):149–152. doi: 10.1016/S0006-3495(94)80753-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Redhead C., Sullivan S. K., Koseki C., Fujiwara K., Edwards J. C. Subcellular distribution and targeting of the intracellular chloride channel p64. Mol Biol Cell. 1997 Apr;8(4):691–704. doi: 10.1091/mbc.8.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rousseau E. Single chloride-selective channel from cardiac sarcoplasmic reticulum studied in planar lipid bilayers. J Membr Biol. 1989 Aug;110(1):39–47. doi: 10.1007/BF01870991. [DOI] [PubMed] [Google Scholar]
  31. Rychkov G. Y., Astill D. S., Bennetts B., Hughes B. P., Bretag A. H., Roberts M. L. pH-dependent interactions of Cd2+ and a carboxylate blocker with the rat C1C-1 chloride channel and its R304E mutant in the Sf-9 insect cell line. J Physiol. 1997 Jun 1;501(Pt 2):355–362. doi: 10.1111/j.1469-7793.1997.355bn.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Scheuer T., Auld V. J., Boyd S., Offord J., Dunn R., Catterall W. A. Functional properties of rat brain sodium channels expressed in a somatic cell line. Science. 1990 Feb 16;247(4944):854–858. doi: 10.1126/science.2154850. [DOI] [PubMed] [Google Scholar]
  33. Schmidt-Rose T., Jentsch T. J. Transmembrane topology of a CLC chloride channel. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7633–7638. doi: 10.1073/pnas.94.14.7633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Steinmeyer K., Ortland C., Jentsch T. J. Primary structure and functional expression of a developmentally regulated skeletal muscle chloride channel. Nature. 1991 Nov 28;354(6351):301–304. doi: 10.1038/354301a0. [DOI] [PubMed] [Google Scholar]
  35. Stephens G. J., Garratt J. C., Robertson B., Owen D. G. On the mechanism of 4-aminopyridine action on the cloned mouse brain potassium channel mKv1.1. J Physiol. 1994 Jun 1;477(Pt 2):187–196. doi: 10.1113/jphysiol.1994.sp020183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tabcharani J. A., Chang X. B., Riordan J. R., Hanrahan J. W. Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene. Nature. 1991 Aug 15;352(6336):628–631. doi: 10.1038/352628a0. [DOI] [PubMed] [Google Scholar]
  37. Townsend C., Rosenberg R. L. Characterization of a chloride channel reconstituted from cardiac sarcoplasmic reticulum. J Membr Biol. 1995 Sep;147(2):121–136. doi: 10.1007/BF00233541. [DOI] [PubMed] [Google Scholar]
  38. Trouet D., Nilius B., Voets T., Droogmans G., Eggermont J. Use of a bicistronic GFP-expression vector to characterise ion channels after transfection in mammalian cells. Pflugers Arch. 1997 Sep;434(5):632–638. doi: 10.1007/s004240050445. [DOI] [PubMed] [Google Scholar]
  39. Valenzuela S. M., Martin D. K., Por S. B., Robbins J. M., Warton K., Bootcov M. R., Schofield P. R., Campbell T. J., Breit S. N. Molecular cloning and expression of a chloride ion channel of cell nuclei. J Biol Chem. 1997 May 9;272(19):12575–12582. doi: 10.1074/jbc.272.19.12575. [DOI] [PubMed] [Google Scholar]
  40. Voets T., Buyse G., Tytgat J., Droogmans G., Eggermont J., Nilius B. The chloride current induced by expression of the protein pICln in Xenopus oocytes differs from the endogenous volume-sensitive chloride current. J Physiol. 1996 Sep 1;495(Pt 2):441–447. doi: 10.1113/jphysiol.1996.sp021605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Williams A. F., Barclay A. N., Clark S. J., Paterson D. J., Willis A. C. Similarities in sequences and cellular expression between rat CD2 and CD4 antigens. J Exp Med. 1987 Feb 1;165(2):368–380. doi: 10.1084/jem.165.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yu W. H., Wolfgang W., Forte M. Subcellular localization of human voltage-dependent anion channel isoforms. J Biol Chem. 1995 Jun 9;270(23):13998–14006. doi: 10.1074/jbc.270.23.13998. [DOI] [PubMed] [Google Scholar]
  43. al-Awqati Q. Chloride channels of intracellular organelles. Curr Opin Cell Biol. 1995 Aug;7(4):504–508. doi: 10.1016/0955-0674(95)80006-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES