Abstract
The flavonoids constitute a large group of polyphenolic phytochemicals with antioxidant properties in vitro. The interactions of four structurally related flavonoids (quercetin, kaempferol, rutin and luteolin) with Cu2+ ions were investigated in terms of the extent to which they undergo complex formation through chelation or modification through oxidation, as well as in their structural dependence. The ortho 3',4'-dihydroxy substitution in the B ring is shown to be important for Cu2+-chelate formation, thereby influencing the antioxidant activity. The presence of a 3-hydroxy group in the flavonoid structure enhances the oxidation of quercetin and kaempferol, whereas luteolin and rutin, each lacking the 3-hydroxy group, do not oxidize as readily in the presence of Cu2+ ions. The results also demonstrate that the reactivities of the flavonoids in protecting low-density lipoprotein (LDL) against Cu2+ ion-induced oxidation are dependent on their structural properties in terms of the response of the particular flavonoid to Cu2+ ions, whether chelation or oxidation, their partitioning abilities between the aqueous compartment and the lipophilic environment within the LDL particle, and their hydrogen-donating antioxidant properties.
Full Text
The Full Text of this article is available as a PDF (428.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Afanas'ev I. B., Dorozhko A. I., Brodskii A. V., Kostyuk V. A., Potapovitch A. I. Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol. 1989 Jun 1;38(11):1763–1769. doi: 10.1016/0006-2952(89)90410-3. [DOI] [PubMed] [Google Scholar]
- Bors W., Heller W., Michel C., Saran M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol. 1990;186:343–355. doi: 10.1016/0076-6879(90)86128-i. [DOI] [PubMed] [Google Scholar]
- Chung B. H., Wilkinson T., Geer J. C., Segrest J. P. Preparative and quantitative isolation of plasma lipoproteins: rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor. J Lipid Res. 1980 Mar;21(3):284–291. [PubMed] [Google Scholar]
- Dobbin P. S., Hider R. C., Hall A. D., Taylor P. D., Sarpong P., Porter J. B., Xiao G., van der Helm D. Synthesis, physicochemical properties, and biological evaluation of N-substituted 2-alkyl-3-hydroxy-4(1H)-pyridinones: orally active iron chelators with clinical potential. J Med Chem. 1993 Aug 20;36(17):2448–2458. doi: 10.1021/jm00069a002. [DOI] [PubMed] [Google Scholar]
- Esterbauer H., Gebicki J., Puhl H., Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992 Oct;13(4):341–390. doi: 10.1016/0891-5849(92)90181-f. [DOI] [PubMed] [Google Scholar]
- Jessup W., Rankin S. M., De Whalley C. V., Hoult J. R., Scott J., Leake D. S. Alpha-tocopherol consumption during low-density-lipoprotein oxidation. Biochem J. 1990 Jan 15;265(2):399–405. doi: 10.1042/bj2650399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mangiapane H., Thomson J., Salter A., Brown S., Bell G. D., White D. A. The inhibition of the oxidation of low density lipoprotein by (+)-catechin, a naturally occurring flavonoid. Biochem Pharmacol. 1992 Feb 4;43(3):445–450. doi: 10.1016/0006-2952(92)90562-w. [DOI] [PubMed] [Google Scholar]
- Markwell M. A., Haas S. M., Tolbert N. E., Bieber L. L. Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods Enzymol. 1981;72:296–303. doi: 10.1016/s0076-6879(81)72018-4. [DOI] [PubMed] [Google Scholar]
- Mathiesen L., Malterud K. E., Nenseter M. S., Sund R. B. Inhibition of low density lipoprotein oxidation by myrigalone B, a naturally occurring flavonoid. Pharmacol Toxicol. 1996 Mar;78(3):143–146. doi: 10.1111/j.1600-0773.1996.tb00195.x. [DOI] [PubMed] [Google Scholar]
- Miura S., Watanabe J., Sano M., Tomita T., Osawa T., Hara Y., Tomita I. Effects of various natural antioxidants on the Cu(2+)-mediated oxidative modification of low density lipoprotein. Biol Pharm Bull. 1995 Jan;18(1):1–4. doi: 10.1248/bpb.18.1. [DOI] [PubMed] [Google Scholar]
- Morel I., Lescoat G., Cillard P., Cillard J. Role of flavonoids and iron chelation in antioxidant action. Methods Enzymol. 1994;234:437–443. doi: 10.1016/0076-6879(94)34114-1. [DOI] [PubMed] [Google Scholar]
- Morel I., Lescoat G., Cogrel P., Sergent O., Pasdeloup N., Brissot P., Cillard P., Cillard J. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol. 1993 Jan 7;45(1):13–19. doi: 10.1016/0006-2952(93)90371-3. [DOI] [PubMed] [Google Scholar]
- Rice-Evans C. A., Miller N. J., Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–956. doi: 10.1016/0891-5849(95)02227-9. [DOI] [PubMed] [Google Scholar]
- Rice-Evans C., Leake D., Bruckdorfer K. R., Diplock A. T. Practical approaches to low density lipoprotein oxidation: whys, wherefores and pitfalls. Free Radic Res. 1996 Oct;25(4):285–311. doi: 10.3109/10715769609149053. [DOI] [PubMed] [Google Scholar]
- Saija A., Scalese M., Lanza M., Marzullo D., Bonina F., Castelli F. Flavonoids as antioxidant agents: importance of their interaction with biomembranes. Free Radic Biol Med. 1995 Oct;19(4):481–486. doi: 10.1016/0891-5849(94)00240-k. [DOI] [PubMed] [Google Scholar]
- Salah N., Miller N. J., Paganga G., Tijburg L., Bolwell G. P., Rice-Evans C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys. 1995 Oct 1;322(2):339–346. doi: 10.1006/abbi.1995.1473. [DOI] [PubMed] [Google Scholar]
- Terao J., Piskula M., Yao Q. Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers. Arch Biochem Biophys. 1994 Jan;308(1):278–284. doi: 10.1006/abbi.1994.1039. [DOI] [PubMed] [Google Scholar]
- Thompson M., Williams C. R., Elliot G. E. Stability of flavonoid complexes of copper(II) and flavonoid antioxidant activity. Anal Chim Acta. 1976 Sep;85(2):375–381. doi: 10.1016/S0003-2670(01)84703-6. [DOI] [PubMed] [Google Scholar]
- Wang P. F., Zheng R. L. Inhibitions of the autoxidation of linoleic acid by flavonoids in micelles. Chem Phys Lipids. 1992 Nov;63(1-2):37–40. doi: 10.1016/0009-3084(92)90019-l. [DOI] [PubMed] [Google Scholar]
- Wolfenden R., Radzicka A. On the probability of finding a water molecule in a nonpolar cavity. Science. 1994 Aug 12;265(5174):936–937. doi: 10.1126/science.8052849. [DOI] [PubMed] [Google Scholar]
- Yan Dao-Guang, Zhou Mei, Chen Yuan. Comparison of the Inhibitory Effects of Quercetin and Rutin on the Oxidative Modification of LDL induced By Fe(2+)Cu(2+). Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 1996;28(1):106–109. [PubMed] [Google Scholar]
- de Whalley C. V., Rankin S. M., Hoult J. R., Jessup W., Leake D. S. Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochem Pharmacol. 1990 Jun 1;39(11):1743–1750. doi: 10.1016/0006-2952(90)90120-a. [DOI] [PubMed] [Google Scholar]
- van Acker S. A., van den Berg D. J., Tromp M. N., Griffioen D. H., van Bennekom W. P., van der Vijgh W. J., Bast A. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med. 1996;20(3):331–342. doi: 10.1016/0891-5849(95)02047-0. [DOI] [PubMed] [Google Scholar]