Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 15;330(Pt 3):1189–1195. doi: 10.1042/bj3301189

Regulation of ATP supply during muscle contraction: theoretical studies.

B Korzeniewski 1
PMCID: PMC1219260  PMID: 9494084

Abstract

The dynamic computer model of oxidative phosphorylation developed previously and successfully tested for large-scale changes in fluxes and metabolite concentrations was used to study the question of how the rate of ATP production by oxidative phosphorylation is adjusted to meet the energy demand during muscle contraction, which causes a great increase in ATP consumption in relation to the resting state. The changes in the respiration rate and ATP/ADP ratio after the onset of maximal work measured experimentally were compared with simulated changes in the respiration rate and ATP/ADP in several different cases, assuming direct activation of different steps by an external effector. On the basis of the computer simulations performed, it was possible to conclude which enzymes/metabolic blocks should be directly activated to cause the experimentally observable changes in fluxes and metabolite concentrations. The theoretical results obtained suggest that the parallel direct activation of actinomyosin-ATP-ase and oxidative phosphorylation by an external effector (for example calcium ions) is the main mechanism responsible for fitting of ATP production to ATP consumption, while the negative feedback via an increase in ADP concentration (decrease in ATP/ADP), which indirectly activates the ATP supply, plays only a minor role. Additionally, the conclusion is drawn that most of the oxidative phosphorylation steps should be directly activated in order to explain the observed changes in the respiration rate and ATP/ADP ratio (and also in other parameters) during muscle contraction. It is suggested that there should exist a universal external activator/regulatory mechanism which causes a parallel stimulation of different enzymes/processes. A possible nature of such an activator is shortly discussed.

Full Text

The Full Text of this article is available as a PDF (296.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerboom T. P., Bookelman H., Tager J. M. Control of ATP transport across the mitochondrial membrane in isolated rat-liver cells. FEBS Lett. 1977 Feb 15;74(1):50–54. doi: 10.1016/0014-5793(77)80750-3. [DOI] [PubMed] [Google Scholar]
  2. Arthur P. G., Hogan M. C., Bebout D. E., Wagner P. D., Hochachka P. W. Modeling the effects of hypoxia on ATP turnover in exercising muscle. J Appl Physiol (1985) 1992 Aug;73(2):737–742. doi: 10.1152/jappl.1992.73.2.737. [DOI] [PubMed] [Google Scholar]
  3. Atkinson D. E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 1968 Nov;7(11):4030–4034. doi: 10.1021/bi00851a033. [DOI] [PubMed] [Google Scholar]
  4. Balaban R. S., Heineman F. W. Control of mitochondrial respiration in the heart in vivo. Mol Cell Biochem. 1989 Sep 7;89(2):191–197. doi: 10.1007/BF00220775. [DOI] [PubMed] [Google Scholar]
  5. Balaban R. S., Kantor H. L., Katz L. A., Briggs R. W. Relation between work and phosphate metabolite in the in vivo paced mammalian heart. Science. 1986 May 30;232(4754):1121–1123. doi: 10.1126/science.3704638. [DOI] [PubMed] [Google Scholar]
  6. Brown G. C. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J. 1992 May 15;284(Pt 1):1–13. doi: 10.1042/bj2840001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955 Nov;217(1):383–393. [PubMed] [Google Scholar]
  8. CHANCE B., WILLIAMS G. R. The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem. 1956;17:65–134. doi: 10.1002/9780470122624.ch2. [DOI] [PubMed] [Google Scholar]
  9. Denton R. M., McCormack J. G. On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett. 1980 Sep 22;119(1):1–8. doi: 10.1016/0014-5793(80)80986-0. [DOI] [PubMed] [Google Scholar]
  10. Dobson G. P., Parkhouse W. S., Weber J. M., Stuttard E., Harman J., Snow D. H., Hochachka P. W. Metabolic changes in skeletal muscle and blood of greyhounds during 800-m track sprint. Am J Physiol. 1988 Sep;255(3 Pt 2):R513–R519. doi: 10.1152/ajpregu.1988.255.3.R513. [DOI] [PubMed] [Google Scholar]
  11. Dudley G. A., Tullson P. C., Terjung R. L. Influence of mitochondrial content on the sensitivity of respiratory control. J Biol Chem. 1987 Jul 5;262(19):9109–9114. [PubMed] [Google Scholar]
  12. Erecińska M., Stubbs M., Miyata Y., Ditre C. M. Regulation of cellular metabolism by intracellular phosphate. Biochim Biophys Acta. 1977 Oct 12;462(1):20–35. doi: 10.1016/0005-2728(77)90186-4. [DOI] [PubMed] [Google Scholar]
  13. Fell D. A., Thomas S. Physiological control of metabolic flux: the requirement for multisite modulation. Biochem J. 1995 Oct 1;311(Pt 1):35–39. doi: 10.1042/bj3110035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. From A. H., Petein M. A., Michurski S. P., Zimmer S. D., Uğurbil K. 31P-NMR studies of respiratory regulation in the intact myocardium. FEBS Lett. 1986 Oct 6;206(2):257–261. doi: 10.1016/0014-5793(86)80992-9. [DOI] [PubMed] [Google Scholar]
  15. From A. H., Zimmer S. D., Michurski S. P., Mohanakrishnan P., Ulstad V. K., Thoma W. J., Uğurbil K. Regulation of the oxidative phosphorylation rate in the intact cell. Biochemistry. 1990 Apr 17;29(15):3731–3743. doi: 10.1021/bi00467a020. [DOI] [PubMed] [Google Scholar]
  16. Harris D. A., Das A. M. Control of mitochondrial ATP synthesis in the heart. Biochem J. 1991 Dec 15;280(Pt 3):561–573. doi: 10.1042/bj2800561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hassinen I. E. Mitochondrial respiratory control in the myocardium. Biochim Biophys Acta. 1986;853(2):135–151. doi: 10.1016/0304-4173(86)90008-x. [DOI] [PubMed] [Google Scholar]
  18. Heineman F. W., Balaban R. S. Control of mitochondrial respiration in the heart in vivo. Annu Rev Physiol. 1990;52:523–542. doi: 10.1146/annurev.ph.52.030190.002515. [DOI] [PubMed] [Google Scholar]
  19. Heineman F. W., Balaban R. S. Effects of afterload and heart rate on NAD(P)H redox state in the isolated rabbit heart. Am J Physiol. 1993 Feb;264(2 Pt 2):H433–H440. doi: 10.1152/ajpheart.1993.264.2.H433. [DOI] [PubMed] [Google Scholar]
  20. Hogan M. C., Arthur P. G., Bebout D. E., Hochachka P. W., Wagner P. D. Role of O2 in regulating tissue respiration in dog muscle working in situ. J Appl Physiol (1985) 1992 Aug;73(2):728–736. doi: 10.1152/jappl.1992.73.2.728. [DOI] [PubMed] [Google Scholar]
  21. Jeffrey F. M., Malloy C. R. Respiratory control and substrate effects in the working rat heart. Biochem J. 1992 Oct 1;287(Pt 1):117–123. doi: 10.1042/bj2870117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Katz L. A., Koretsky A. P., Balaban R. S. Respiratory control in the glucose perfused heart. A 31P NMR and NADH fluorescence study. FEBS Lett. 1987 Sep 14;221(2):270–276. doi: 10.1016/0014-5793(87)80939-0. [DOI] [PubMed] [Google Scholar]
  23. Katz L. A., Swain J. A., Portman M. A., Balaban R. S. Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am J Physiol. 1989 Jan;256(1 Pt 2):H265–H274. doi: 10.1152/ajpheart.1989.256.1.H265. [DOI] [PubMed] [Google Scholar]
  24. Kauppinen R. Proton electrochemical potential of the inner mitochondrial membrane in isolated perfused rat hearts, as measured by exogenous probes. Biochim Biophys Acta. 1983 Oct 31;725(1):131–137. doi: 10.1016/0005-2728(83)90232-3. [DOI] [PubMed] [Google Scholar]
  25. Korzeniewski B., Froncisz W. Theoretical studies on the control of the oxidative phosphorylation system. Biochim Biophys Acta. 1992 Aug 28;1102(1):67–75. doi: 10.1016/0005-2728(92)90066-b. [DOI] [PubMed] [Google Scholar]
  26. Korzeniewski B., Harper M. E., Brand M. D. Proportional activation coefficients during stimulation of oxidative phosphorylation by lactate and pyruvate or by vasopressin. Biochim Biophys Acta. 1995 May 10;1229(3):315–322. doi: 10.1016/0005-2728(95)00008-7. [DOI] [PubMed] [Google Scholar]
  27. Korzeniewski B., Mazat J. P. Theoretical studies on control of oxidative phosphorylation in muscle mitochondria at different energy demands and oxygen concentrations. Acta Biotheor. 1996 Nov;44(3-4):263–269. doi: 10.1007/BF00046532. [DOI] [PubMed] [Google Scholar]
  28. Korzeniewski B., Mazat J. P. Theoretical studies on the control of oxidative phosphorylation in muscle mitochondria: application to mitochondrial deficiencies. Biochem J. 1996 Oct 1;319(Pt 1):143–148. doi: 10.1042/bj3190143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Krämer R., Mayr U., Heberger C., Tsompanidou S. Activation of the ADP/ATP carrier from mitochondria by cationic effectors. Biochim Biophys Acta. 1986 Feb 27;855(2):201–210. doi: 10.1016/0005-2736(86)90166-5. [DOI] [PubMed] [Google Scholar]
  30. Kushmerick M. J., Meyer R. A., Brown T. R. Regulation of oxygen consumption in fast- and slow-twitch muscle. Am J Physiol. 1992 Sep;263(3 Pt 1):C598–C606. doi: 10.1152/ajpcell.1992.263.3.C598. [DOI] [PubMed] [Google Scholar]
  31. Laterveer F. D., Gellerich F. N., Nicolay K. Macromolecules increase the channeling of ADP from externally associated hexokinase to the matrix of mitochondria. Eur J Biochem. 1995 Sep 1;232(2):569–577. [PubMed] [Google Scholar]
  32. Lemasters J. J., Sowers A. E. Phosphate dependence and atractyloside inhibition of mitochondrial oxidative phosphorylation. The ADP-ATP carrier is rate-limiting. J Biol Chem. 1979 Feb 25;254(4):1248–1251. [PubMed] [Google Scholar]
  33. Letellier T., Malgat M., Mazat J. P. Control of oxidative phosphorylation in rat muscle mitochondria: implications for mitochondrial myopathies. Biochim Biophys Acta. 1993 Feb 8;1141(1):58–64. doi: 10.1016/0005-2728(93)90189-m. [DOI] [PubMed] [Google Scholar]
  34. McCormack J. G., Denton R. M. The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian tissues. Biochim Biophys Acta. 1990 Jul 25;1018(2-3):287–291. doi: 10.1016/0005-2728(90)90269-a. [DOI] [PubMed] [Google Scholar]
  35. McCormack J. G., Halestrap A. P., Denton R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990 Apr;70(2):391–425. doi: 10.1152/physrev.1990.70.2.391. [DOI] [PubMed] [Google Scholar]
  36. Moreno-Sánchez R., Hogue B. A., Hansford R. G. Influence of NAD-linked dehydrogenase activity on flux through oxidative phosphorylation. Biochem J. 1990 Jun 1;268(2):421–428. doi: 10.1042/bj2680421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rose R. J., Hodgson D. R., Kelso T. B., McCutcheon L. J., Reid T. A., Bayly W. M., Gollnick P. D. Maximum O2 uptake, O2 debt and deficit, and muscle metabolites in Thoroughbred horses. J Appl Physiol (1985) 1988 Feb;64(2):781–788. doi: 10.1152/jappl.1988.64.2.781. [DOI] [PubMed] [Google Scholar]
  38. Saks V. A., Khuchua Z. A., Vasilyeva E. V., Belikova OYu, Kuznetsov A. V. Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration--a synthesis. Mol Cell Biochem. 1994 Apr-May;133-134:155–192. doi: 10.1007/BF01267954. [DOI] [PubMed] [Google Scholar]
  39. Thomas S., Fell D. A. Design of metabolic control for large flux changes. J Theor Biol. 1996 Oct 7;182(3):285–298. doi: 10.1006/jtbi.1996.0166. [DOI] [PubMed] [Google Scholar]
  40. Wallimann T., Wyss M., Brdiczka D., Nicolay K., Eppenberger H. M. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J. 1992 Jan 1;281(Pt 1):21–40. doi: 10.1042/bj2810021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wan B., Doumen C., Duszynski J., Salama G., Vary T. C., LaNoue K. F. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. Am J Physiol. 1993 Aug;265(2 Pt 2):H453–H460. doi: 10.1152/ajpheart.1993.265.2.H453. [DOI] [PubMed] [Google Scholar]
  42. Wanders R. J., Westerhoff H. V. Sigmoidal relation between mitochondrial respiration and log ([ATP]/[ADP])out under conditions of extramitochondrial ATP utilization. Implications for the control and thermodynamics of oxidative phosphorylation. Biochemistry. 1988 Oct 4;27(20):7832–7840. doi: 10.1021/bi00420a037. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES