Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 15;330(Pt 3):1217–1221. doi: 10.1042/bj3301217

Recombinant expression and biochemical characterization of an NADPH:flavin oxidoreductase from Entamoeba histolytica.

I Bruchhaus 1, S Richter 1, E Tannich 1
PMCID: PMC1219264  PMID: 9494088

Abstract

The gene encoding a putative NADPH:flavin oxidoreductase of the protozoan parasite Entamoeba histolytica (Eh34) was recombinantly expressed in Escherichia coli. The purified recombinant protein (recEh34) has a molecular mass of about 35 kDa upon SDS/PAGE analysis, exhibits a flavoprotein-like absorption spectrum and contains 1 mol of non-covalently bound FMN per mol of protein. RecEh34 reveals two different enzymic activities. It catalyses the NADPH-dependent reduction of oxygen to hydrogen peroxide (H2O2), as well as of disulphides such as 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and cystine. The disulphide reductase but not the H2O2-forming NADPH oxidase activity is inhibitable by sulphydryl-active compounds, indicating that a thiol component is part of the active site for the disulphide reductase activity, whereas for the H2O2-forming NADPH oxidase activity only the flavin is required. Compared with the recombinant protein, similar activities are present in amoebic extracts. Native Eh34 is active in a monomeric as well as in a dimeric state. In contrast to recEh34, no flavin was associated with the native protein. However, both NADPH oxidase as well as DTNB reductase activity were found to be dependent on the addition of FAD or FMN.

Full Text

The Full Text of this article is available as a PDF (265.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Band R. N., Cirrito H. Growth response of axenic Entamoeba histolytica to hydrogen, carbon dioxide, and oxygen. J Protozool. 1979 May;26(2):282–286. doi: 10.1111/j.1550-7408.1979.tb02781.x. [DOI] [PubMed] [Google Scholar]
  2. Brown D. M., Upcroft J. A., Upcroft P. Cysteine is the major low-molecular weight thiol in Giardia duodenalis. Mol Biochem Parasitol. 1993 Sep;61(1):155–158. doi: 10.1016/0166-6851(93)90169-x. [DOI] [PubMed] [Google Scholar]
  3. Bruchhaus I., Richter S., Tannich E. Removal of hydrogen peroxide by the 29 kDa protein of Entamoeba histolytica. Biochem J. 1997 Sep 15;326(Pt 3):785–789. doi: 10.1042/bj3260785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bruchhaus I., Tannich E. Analysis of the genomic sequence encoding the 29-kDa cysteine-rich protein of Entamoeba histolytica. Trop Med Parasitol. 1993 Jun;44(2):116–118. [PubMed] [Google Scholar]
  5. Bruchhaus I., Tannich E. Identification of an Entamoeba histolytica gene encoding a protein homologous to prokaryotic disulphide oxidoreductases. Mol Biochem Parasitol. 1995 Mar;70(1-2):187–191. doi: 10.1016/0166-6851(94)00214-8. [DOI] [PubMed] [Google Scholar]
  6. Childs R. E., Bardsley W. G. The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J. 1975 Jan;145(1):93–103. doi: 10.1042/bj1450093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clos J., Brandau S. pJC20 and pJC40--two high-copy-number vectors for T7 RNA polymerase-dependent expression of recombinant genes in Escherichia coli. Protein Expr Purif. 1994 Apr;5(2):133–137. doi: 10.1006/prep.1994.1020. [DOI] [PubMed] [Google Scholar]
  8. Cohen G., Argaman A., Schreiber R., Mislovati M., Aharonowitz Y. The thioredoxin system of Penicillium chrysogenum and its possible role in penicillin biosynthesis. J Bacteriol. 1994 Feb;176(4):973–984. doi: 10.1128/jb.176.4.973-984.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen G., Yanko M., Mislovati M., Argaman A., Schreiber R., Av-Gay Y., Aharonowitz Y. Thioredoxin-thioredoxin reductase system of Streptomyces clavuligerus: sequences, expression, and organization of the genes. J Bacteriol. 1993 Aug;175(16):5159–5167. doi: 10.1128/jb.175.16.5159-5167.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Diamond L. S., Harlow D. R., Cunnick C. C. A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans R Soc Trop Med Hyg. 1978;72(4):431–432. doi: 10.1016/0035-9203(78)90144-x. [DOI] [PubMed] [Google Scholar]
  11. Ellis J. E., Yarlett N., Cole D., Humphreys M. J., Lloyd D. Antioxidant defences in the microaerophilic protozoan Trichomonas vaginalis: comparison of metronidazole-resistant and sensitive strains. Microbiology. 1994 Sep;140(Pt 9):2489–2494. doi: 10.1099/13500872-140-9-2489. [DOI] [PubMed] [Google Scholar]
  12. Faeder E. J., Siegel L. M. A rapid micromethod for determination of FMN and FAD in mixtures. Anal Biochem. 1973 May;53(1):332–336. doi: 10.1016/0003-2697(73)90442-9. [DOI] [PubMed] [Google Scholar]
  13. Fahey R. C., Newton G. L., Arrick B., Overdank-Bogart T., Aley S. B. Entamoeba histolytica: a eukaryote without glutathione metabolism. Science. 1984 Apr 6;224(4644):70–72. doi: 10.1126/science.6322306. [DOI] [PubMed] [Google Scholar]
  14. Fairlamb A. H. Novel biochemical pathways in parasitic protozoa. Parasitology. 1989;99 (Suppl):S93–112. doi: 10.1017/s003118200008344x. [DOI] [PubMed] [Google Scholar]
  15. Gillin F. D., Diamond L. S. Entamoeba histolytica and Giardia lamblia: effects of cysteine and oxygen tension on trophozoite attachment to glass and survival in culture media. Exp Parasitol. 1981 Aug;52(1):9–17. doi: 10.1016/0014-4894(81)90055-2. [DOI] [PubMed] [Google Scholar]
  16. Gillin F. D., Diamond L. S. Entamoeba histolytica and Giardia lamblia: growth responses to reducing agents. Exp Parasitol. 1981 Jun;51(3):382–391. doi: 10.1016/0014-4894(81)90125-9. [DOI] [PubMed] [Google Scholar]
  17. Greer S., Perham R. N. Glutathione reductase from Escherichia coli: cloning and sequence analysis of the gene and relationship to other flavoprotein disulfide oxidoreductases. Biochemistry. 1986 May 6;25(9):2736–2742. doi: 10.1021/bi00357a069. [DOI] [PubMed] [Google Scholar]
  18. Holmgren A. Bovine thioredoxin system. Purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reduction. J Biol Chem. 1977 Jul 10;252(13):4600–4606. [PubMed] [Google Scholar]
  19. Jacobson F. S., Morgan R. W., Christman M. F., Ames B. N. An alkyl hydroperoxide reductase from Salmonella typhimurium involved in the defense of DNA against oxidative damage. Purification and properties. J Biol Chem. 1989 Jan 25;264(3):1488–1496. [PubMed] [Google Scholar]
  20. Leippe M., Ebel S., Schoenberger O. L., Horstmann R. D., Müller-Eberhard H. J. Pore-forming peptide of pathogenic Entamoeba histolytica. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7659–7663. doi: 10.1073/pnas.88.17.7659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lo H., Reeves R. E. Entamoeba histolytica: flavins in axenic organisms. Exp Parasitol. 1979 Apr;47(2):180–184. doi: 10.1016/0014-4894(79)90071-7. [DOI] [PubMed] [Google Scholar]
  22. Lo H., Reeves R. E. Purification and properties of NADPH:flavin oxidoreductase from Entamoeba histolytica. Mol Biochem Parasitol. 1980 Oct;2(1):23–30. doi: 10.1016/0166-6851(80)90045-6. [DOI] [PubMed] [Google Scholar]
  23. Niimura Y., Ohnishi K., Yarita Y., Hidaka M., Masaki H., Uchimura T., Suzuki H., Kozaki M., Uozumi T. A flavoprotein functional as NADH oxidase from Amphibacillus xylanus Ep01: purification and characterization of the enzyme and structural analysis of its gene. J Bacteriol. 1993 Dec;175(24):7945–7950. doi: 10.1128/jb.175.24.7945-7950.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Niimura Y., Poole L. B., Massey V. Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkyl-hydroperoxide reductase flavoprotein components show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl-hydroperoxide reductase 22-kDa protein component. J Biol Chem. 1995 Oct 27;270(43):25645–25650. doi: 10.1074/jbc.270.43.25645. [DOI] [PubMed] [Google Scholar]
  25. Ohnishi K., Niimura Y., Yokoyama K., Hidaka M., Masaki H., Uchimura T., Suzuki H., Uozumi T., Kozaki M., Komagata K. Purification and analysis of a flavoprotein functional as NADH oxidase from Amphibacillus xylanus overexpressed in Escherichia coli. J Biol Chem. 1994 Dec 16;269(50):31418–31423. [PubMed] [Google Scholar]
  26. Poole L. B., Ellis H. R. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Biochemistry. 1996 Jan 9;35(1):56–64. doi: 10.1021/bi951887s. [DOI] [PubMed] [Google Scholar]
  27. Poole L. B. Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 2. Cystine disulfides involved in catalysis of peroxide reduction. Biochemistry. 1996 Jan 9;35(1):65–75. doi: 10.1021/bi951888k. [DOI] [PubMed] [Google Scholar]
  28. Ravdin J. I. Immunobiology of human infection by Entamoeba histolytica. Pathol Immunopathol Res. 1989;8(3-4):179–205. doi: 10.1159/000157148. [DOI] [PubMed] [Google Scholar]
  29. Reeves R. E. Metabolism of Entamoeba histolytica Schaudinn, 1903. Adv Parasitol. 1984;23:105–142. doi: 10.1016/s0065-308x(08)60286-9. [DOI] [PubMed] [Google Scholar]
  30. Reeves R. E., Warren L. G., Susskind B., Lo H. S. An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J Biol Chem. 1977 Jan 25;252(2):726–731. [PubMed] [Google Scholar]
  31. Russel M., Model P. Sequence of thioredoxin reductase from Escherichia coli. Relationship to other flavoprotein disulfide oxidoreductases. J Biol Chem. 1988 Jun 25;263(18):9015–9019. [PubMed] [Google Scholar]
  32. Schallreuter K. U., Wood J. M. The role of thioredoxin reductase in the reduction of free radicals at the surface of the epidermis. Biochem Biophys Res Commun. 1986 Apr 29;136(2):630–637. doi: 10.1016/0006-291x(86)90487-0. [DOI] [PubMed] [Google Scholar]
  33. Tachibana H., Ihara S., Kobayashi S., Kaneda Y., Takeuchi T., Watanabe Y. Differences in genomic DNA sequences between pathogenic and nonpathogenic isolates of Entamoeba histolytica identified by polymerase chain reaction. J Clin Microbiol. 1991 Oct;29(10):2234–2239. doi: 10.1128/jcm.29.10.2234-2239.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takeuchi T., Weinbach E. C., Diamond L. S. Pyruvate oxidase (CoA acetylating) in Entamoeba histolytica. Biochem Biophys Res Commun. 1975 Jul 22;65(2):591–596. doi: 10.1016/s0006-291x(75)80187-2. [DOI] [PubMed] [Google Scholar]
  35. Tartaglia L. A., Storz G., Brodsky M. H., Lai A., Ames B. N. Alkyl hydroperoxide reductase from Salmonella typhimurium. Sequence and homology to thioredoxin reductase and other flavoprotein disulfide oxidoreductases. J Biol Chem. 1990 Jun 25;265(18):10535–10540. [PubMed] [Google Scholar]
  36. Thurman R. G., Ley H. G., Scholz R. Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur J Biochem. 1972 Feb;25(3):420–430. doi: 10.1111/j.1432-1033.1972.tb01711.x. [DOI] [PubMed] [Google Scholar]
  37. Torian B. E., Flores B. M., Stroeher V. L., Hagen F. S., Stamm W. E. cDNA sequence analysis of a 29-kDa cysteine-rich surface antigen of pathogenic Entamoeba histolytica. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6358–6362. doi: 10.1073/pnas.87.16.6358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weinbach E. C., Harlow D. R., Claggett C. E., Diamond L. S. Entamoeba histolytica: diaphorase activities. Exp Parasitol. 1977 Feb;41(1):186–197. doi: 10.1016/0014-4894(77)90144-8. [DOI] [PubMed] [Google Scholar]
  39. Williams C. H., Jr Mechanism and structure of thioredoxin reductase from Escherichia coli. FASEB J. 1995 Oct;9(13):1267–1276. doi: 10.1096/fasebj.9.13.7557016. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES