Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 15;330(Pt 3):1283–1291. doi: 10.1042/bj3301283

Dependence of mammalian putrescine and spermidine transport on plasma-membrane potential: identification of an amiloride binding site on the putrescine carrier.

R Poulin 1, C Zhao 1, S Verma 1, R Charest-Gaudreault 1, M Audette 1
PMCID: PMC1219274  PMID: 9494098

Abstract

The mechanism of mammalian polyamine transport is poorly understood. We have investigated the role of plasma-membrane potential (DeltaPsipm) in putrescine and spermidine uptake in ZR-75-1 human breast cancer cells. The rate of [3H]putrescine and [3H]spermidine uptake was inversely correlated to extracellular [K+] ([K+]o) and to DeltaPsipm, as determined by the accumulation of [3H]tetraphenylphosphonium bromide (TPP). Inward transport was unaffected by a selective decrease in mitochondrial potential (DeltaPsimit) induced by valinomycin at low [K+]o, but was reduced by approximately 60% by the rheogenic protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP), which rapidly (<=15 min) collapsed both DeltaPsipm and DeltaPsimit. Plasma-membrane depolarization by high [K+]o or CCCP did not enhance putrescine efflux in cells pre-loaded with [3H]putrescine, suggesting that decreased uptake caused by these agents did not result from a higher excretion rate. On the other hand, the electroneutral K+/H+ exchanger nigericin (10 microM) co-operatively depressed -3H-TPP, [3H]putrescine and [3H]spermidine uptake in the presence of ouabain. Suppression of putrescine uptake by nigericin+ouabain was Na+-dependent, suggesting that plasma-membrane repolarization by the electrogenic Na+ pump was required upon acidification induced by nigericin, due to the activation of the Na+/H+ antiporter. The sole addition of 5-N, N-hexamethylene amiloride, a potent inhibitor of the Na+/H+ antiporter, strongly inhibited putrescine uptake in a competitive fashion -Ki 4.0+/-0.9 (S.D.) microM-, while being a weaker antagonist of spermidine uptake. The potency of a series of amiloride analogues to inhibit putrescine uptake was clearly different from that of the Na+/H+ antiporter, and resembled that noted for Na+ co-transport proteins. These data demonstrate that putrescine and spermidine influx is mainly unidirectional and strictly depends on DeltaPsipm, but not DeltaPsimit. This report also provides first evidence for a high-affinity amiloride-binding site on the putrescine carrier, which provides new insight into the biochemical properties of this transporter.

Full Text

The Full Text of this article is available as a PDF (758.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. A., Albright K. D. Mitochondrial defects in cis-diamminedichloroplatinum(II)-resistant human ovarian carcinoma cells. Cancer Res. 1992 Apr 1;52(7):1895–1901. [PubMed] [Google Scholar]
  2. Brachet P., Debbabi H., Tomé D. Transport and steady-state accumulation of putrescine in brush-border membrane vesicles of rabbit small intestine. Am J Physiol. 1995 Nov;269(5 Pt 1):G754–G762. doi: 10.1152/ajpgi.1995.269.5.G754. [DOI] [PubMed] [Google Scholar]
  3. Brachet P., Tomé D. Putrescine uptake by rabbit intestinal brush-border membrane vesicles. Biochem Int. 1992 Jul;27(3):465–475. [PubMed] [Google Scholar]
  4. Byers T. L., Pegg A. E. Properties and physiological function of the polyamine transport system. Am J Physiol. 1989 Sep;257(3 Pt 1):C545–C553. doi: 10.1152/ajpcell.1989.257.3.C545. [DOI] [PubMed] [Google Scholar]
  5. Byers T. L., Pegg A. E. Regulation of polyamine transport in Chinese hamster ovary cells. J Cell Physiol. 1990 Jun;143(3):460–467. doi: 10.1002/jcp.1041430309. [DOI] [PubMed] [Google Scholar]
  6. Byers T. L., Wechter R., Nuttall M. E., Pegg A. E. Expression of a human gene for polyamine transport in Chinese-hamster ovary cells. Biochem J. 1989 Nov 1;263(3):745–752. doi: 10.1042/bj2630745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clément S., Delcros J. G., Feuerstein B. G. Spermine uptake is necessary to induce haemoglobin synthesis in murine erythroleukaemia cells. Biochem J. 1995 Dec 15;312(Pt 3):933–938. doi: 10.1042/bj3120933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cook J. S., Shaffer C., Cragoe E. J., Jr Inhibition by amiloride analogues of Na+-dependent hexose uptake in LLC-PK1/Cl4 cells. Am J Physiol. 1987 Aug;253(2 Pt 1):C199–C204. doi: 10.1152/ajpcell.1987.253.2.C199. [DOI] [PubMed] [Google Scholar]
  9. Davis S., Weiss M. J., Wong J. R., Lampidis T. J., Chen L. B. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. J Biol Chem. 1985 Nov 5;260(25):13844–13850. [PubMed] [Google Scholar]
  10. Farkas D. L., Wei M. D., Febbroriello P., Carson J. H., Loew L. M. Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys J. 1989 Dec;56(6):1053–1069. doi: 10.1016/S0006-3495(89)82754-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Flewelling R. F., Hubbell W. L. Hydrophobic ion interactions with membranes. Thermodynamic analysis of tetraphenylphosphonium binding to vesicles. Biophys J. 1986 Feb;49(2):531–540. doi: 10.1016/S0006-3495(86)83663-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ganz M. B., Boyarsky G., Sterzel R. B., Boron W. F. Arginine vasopressin enhances pHi regulation in the presence of HCO3- by stimulating three acid-base transport systems. Nature. 1989 Feb 16;337(6208):648–651. doi: 10.1038/337648a0. [DOI] [PubMed] [Google Scholar]
  13. Gordonsmith R. H., Brooke-Taylor S., Smith L. L., Cohen G. M. Structural requirements of compounds to inhibit pulmonary diamine accumulation. Biochem Pharmacol. 1983 Dec 15;32(24):3701–3709. doi: 10.1016/0006-2952(83)90138-7. [DOI] [PubMed] [Google Scholar]
  14. Grinstein S., Cohen S., Rothstein A. Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport. J Gen Physiol. 1984 Mar;83(3):341–369. doi: 10.1085/jgp.83.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grinstein S., Furuya W. Cytoplasmic pH regulation in phorbol ester-activated human neutrophils. Am J Physiol. 1986 Jul;251(1 Pt 1):C55–C65. doi: 10.1152/ajpcell.1986.251.1.C55. [DOI] [PubMed] [Google Scholar]
  16. Hessels J., Kingma A. W., Ferwerda H., Keij J., van den Berg G. A., Muskiet F. A. Microbial flora in the gastrointestinal tract abolishes cytostatic effects of alpha-difluoromethylornithine in vivo. Int J Cancer. 1989 Jun 15;43(6):1155–1164. doi: 10.1002/ijc.2910430632. [DOI] [PubMed] [Google Scholar]
  17. Hyvönen T., Seiler N., Persson L. Characterization of a COS cell line deficient in polyamine transport. Biochim Biophys Acta. 1994 Apr 28;1221(3):279–285. doi: 10.1016/0167-4889(94)90251-8. [DOI] [PubMed] [Google Scholar]
  18. Kakinuma Y., Hoshino K., Igarashi K. Characterization of the inducible polyamine transporter in bovine lymphocytes. Eur J Biochem. 1988 Sep 15;176(2):409–414. doi: 10.1111/j.1432-1033.1988.tb14297.x. [DOI] [PubMed] [Google Scholar]
  19. Kashiwagi K., Kobayashi H., Igarashi K. Apparently unidirectional polyamine transport by proton motive force in polyamine-deficient Escherichia coli. J Bacteriol. 1986 Mar;165(3):972–977. doi: 10.1128/jb.165.3.972-977.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kavanaugh M. P. Voltage dependence of facilitated arginine flux mediated by the system y+ basic amino acid transporter. Biochemistry. 1993 Jun 8;32(22):5781–5785. doi: 10.1021/bi00073a009. [DOI] [PubMed] [Google Scholar]
  21. Kieber-Emmons T., Lin C., Prammer K. V., Villalobos A., Kosari F., Kleyman T. R. Defining topological similarities among ion transport proteins with anti-amiloride antibodies. Kidney Int. 1995 Oct;48(4):956–964. doi: 10.1038/ki.1995.377. [DOI] [PubMed] [Google Scholar]
  22. Kleyman T. R., Cragoe E. J., Jr Amiloride and its analogs as tools in the study of ion transport. J Membr Biol. 1988 Oct;105(1):1–21. doi: 10.1007/BF01871102. [DOI] [PubMed] [Google Scholar]
  23. Kobayashi M., Iseki K., Sugawara M., Miyazaki K. The diversity of Na(+)-independent uptake systems for polyamines in rat intestinal brush-border membrane vesicles. Biochim Biophys Acta. 1993 Sep 19;1151(2):161–167. doi: 10.1016/0005-2736(93)90100-e. [DOI] [PubMed] [Google Scholar]
  24. Kumagai J., Jain R., Johnson L. R. Characteristics of spermidine uptake by isolated rat enterocytes. Am J Physiol. 1989 May;256(5 Pt 1):G905–G910. doi: 10.1152/ajpgi.1989.256.5.G905. [DOI] [PubMed] [Google Scholar]
  25. Kumagai J., Johnson L. R. Characteristics of putrescine uptake in isolated rat enterocytes. Am J Physiol. 1988 Jan;254(1 Pt 1):G81–G86. doi: 10.1152/ajpgi.1988.254.1.G81. [DOI] [PubMed] [Google Scholar]
  26. Lai Z. F., Hotokebuchi N., Cragoe E. J., Jr, Nishi K. Effects of 5-(N,N-hexamethylene)amiloride on action potentials, intracellular Na, and pH of guinea pig ventricular muscle in vitro. J Cardiovasc Pharmacol. 1994 Feb;23(2):259–267. [PubMed] [Google Scholar]
  27. Lessard M., Zhao C., Singh S. M., Poulin R. Hormonal and feedback regulation of putrescine and spermidine transport in human breast cancer cells. J Biol Chem. 1995 Jan 27;270(4):1685–1694. [PubMed] [Google Scholar]
  28. Lichtshtein D., Kaback H. R., Blume A. J. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions. Proc Natl Acad Sci U S A. 1979 Feb;76(2):650–654. doi: 10.1073/pnas.76.2.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mitchell J. L., Judd G. G., Bareyal-Leyser A., Ling S. Y. Feedback repression of polyamine transport is mediated by antizyme in mammalian tissue-culture cells. Biochem J. 1994 Apr 1;299(Pt 1):19–22. doi: 10.1042/bj2990019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Newell K. J., Tannock I. F. Reduction of intracellular pH as a possible mechanism for killing cells in acidic regions of solid tumors: effects of carbonylcyanide-3-chlorophenylhydrazone. Cancer Res. 1989 Aug 15;49(16):4477–4482. [PubMed] [Google Scholar]
  31. Novotny W. F., Chassande O., Baker M., Lazdunski M., Barbry P. Diamine oxidase is the amiloride-binding protein and is inhibited by amiloride analogues. J Biol Chem. 1994 Apr 1;269(13):9921–9925. [PubMed] [Google Scholar]
  32. Osborne D. L., Seidel E. R. Gastrointestinal luminal polyamines: cellular accumulation and enterohepatic circulation. Am J Physiol. 1990 Apr;258(4 Pt 1):G576–G584. doi: 10.1152/ajpgi.1990.258.4.G576. [DOI] [PubMed] [Google Scholar]
  33. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  34. Persson L., Holm I., Ask A., Heby O. Curative effect of DL-2-difluoromethylornithine on mice bearing mutant L1210 leukemia cells deficient in polyamine uptake. Cancer Res. 1988 Sep 1;48(17):4807–4811. [PubMed] [Google Scholar]
  35. Poulin R., Lessard M., Zhao C. Inorganic cation dependence of putrescine and spermidine transport in human breast cancer cells. J Biol Chem. 1995 Jan 27;270(4):1695–1704. doi: 10.1074/jbc.270.4.1695. [DOI] [PubMed] [Google Scholar]
  36. Poulin R., Pegg A. E. Stable intracellular acidification upon polyamine depletion induced by alpha-difluoromethylornithine or N1,N12-bis(ethyl)spermine in L1210 leukaemia cells. Biochem J. 1995 Dec 15;312(Pt 3):749–756. doi: 10.1042/bj3120749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pritchard J. B., Miller D. S. Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev. 1993 Oct;73(4):765–796. doi: 10.1152/physrev.1993.73.4.765. [DOI] [PubMed] [Google Scholar]
  38. Rose A. M., Valdes R., Jr Understanding the sodium pump and its relevance to disease. Clin Chem. 1994 Sep;40(9):1674–1685. [PubMed] [Google Scholar]
  39. Seiler N., Dezeure F. Polyamine transport in mammalian cells. Int J Biochem. 1990;22(3):211–218. doi: 10.1016/0020-711x(90)90332-w. [DOI] [PubMed] [Google Scholar]
  40. Sha Q., Romano C., Lopatin A. N., Nichols C. G. Spermidine release from xenopus oocytes. Electrodiffusion through a membrane channel. J Biol Chem. 1996 Feb 16;271(7):3392–3397. doi: 10.1074/jbc.271.7.3392. [DOI] [PubMed] [Google Scholar]
  41. Simard J., Dauvois S., Haagensen D. E., Lévesque C., Mérand Y., Labrie F. Regulation of progesterone-binding breast cyst protein GCDFP-24 secretion by estrogens and androgens in human breast cancer cells: a new marker of steroid action in breast cancer. Endocrinology. 1990 Jun;126(6):3223–3231. doi: 10.1210/endo-126-6-3223. [DOI] [PubMed] [Google Scholar]
  42. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  43. Tannock I. F., Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989 Aug 15;49(16):4373–4384. [PubMed] [Google Scholar]
  44. Tjandrawinata R. R., Byus C. V. Regulation of the efflux of putrescine and cadaverine from rapidly growing cultured RAW 264 cells by extracellular putrescine. Biochem J. 1995 Jan 1;305(Pt 1):291–299. doi: 10.1042/bj3050291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Toninello A., Dalla Via L., Siliprandi D., Garlid K. D. Evidence that spermine, spermidine, and putrescine are transported electrophoretically in mitochondria by a specific polyamine uniporter. J Biol Chem. 1992 Sep 15;267(26):18393–18397. [PubMed] [Google Scholar]
  46. Volkow N., Goldman S. S., Flamm E. S., Cravioto H., Wolf A. P., Brodie J. D. Labeled putrescine as a probe in brain tumors. Science. 1983 Aug 12;221(4611):673–675. doi: 10.1126/science.6603020. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES