Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 15;330(Pt 3):1341–1350. doi: 10.1042/bj3301341

Human platelet heparanase: purification, characterization and catalytic activity.

C Freeman 1, C R Parish 1
PMCID: PMC1219281  PMID: 9494105

Abstract

Heparan sulphate (HS) is an important component of the extracellular matrix (ECM) and the vasculature basal lamina (BL) which functions as a barrier to the extravasation of metastatic and inflammatory cells. Platelet-tumour cell aggregation at the capillary endothelium results in activation and degranulation of platelets. Cleavage of HS by endoglycosidase or heparanase activity produced in relatively large amounts by the platelets and the invading cells may assist in the disassembly of the ECM and BL, and thereby facilitate cell migration. Using a recently published rapid, quantitative assay for heparanase activity towards HS [Freeman, C. and Parish, C.R. (1997), Biochem. J., 325, 229-237], human platelet heparanase has now been purified 1700-fold to homogeneity in 19% yield by a five column procedure, which consists of concanavalin A-Sepharose, Zn2+-chelating-Sepharose, Blue A-agarose, octyl-agarose and gel filtration chromatography. The enzyme, which was shown to be an endoglucuronidase that degrades both heparin and HS, has a native molecular mass of 50 kDa when analysed by gel filtration chromatography and by SDS/PAGE. Platelet heparanase degraded porcine mucosal HS in a stepwise fashion from a number average molecular mass of 18.5 to 13, to 8 and finally to 4.5 kDa fragments as determined by gel filtration analysis. Bovine lung heparin was degraded from 8.9 to 4.8 kDa while porcine mucosal heparin was degraded from 8.1 kDa to 3.8 and finally to 2.9 kDa fragments. Studies of the enzyme's substrate specificity using modified heparin analogues showed that substrate cleavage required the presence of carboxyl groups, but O- and N-sulphation were not essential. Inhibition studies demonstrated an absolute requirement for the presence of O-sulphate groups. Platelet heparanase was inhibited by heparin analogues which also inhibited tumour heparanase, suggesting that sulphated polysaccharides which inhibit tumour metastasis may act to prevent both tumour cell and platelet heparanase degradation of endothelial cell surface HS and the basal laminar.

Full Text

The Full Text of this article is available as a PDF (481.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bame K. J., Robson K. Heparanases produce distinct populations of heparan sulfate glycosaminoglycans in Chinese hamster ovary cells. J Biol Chem. 1997 Jan 24;272(4):2245–2251. [PubMed] [Google Scholar]
  2. Bar-Ner M., Eldor A., Wasserman L., Matzner Y., Cohen I. R., Fuks Z., Vlodavsky I. Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species. Blood. 1987 Aug;70(2):551–557. [PubMed] [Google Scholar]
  3. Bartlett M. R., Cowden W. B., Parish C. R. Differential effects of the anti-inflammatory compounds heparin, mannose-6-phosphate, and castanospermine on degradation of the vascular basement membrane by leukocytes, endothelial cells, and platelets. J Leukoc Biol. 1995 Feb;57(2):207–213. doi: 10.1002/jlb.57.2.207. [DOI] [PubMed] [Google Scholar]
  4. Bartlett M. R., Underwood P. A., Parish C. R. Comparative analysis of the ability of leucocytes, endothelial cells and platelets to degrade the subendothelial basement membrane: evidence for cytokine dependence and detection of a novel sulfatase. Immunol Cell Biol. 1995 Apr;73(2):113–124. doi: 10.1038/icb.1995.19. [DOI] [PubMed] [Google Scholar]
  5. Belford D. A., Hendry I. A., Parish C. R. Ability of different chemically modified heparins to potentiate the biological activity of heparin-binding growth factor 1: lack of correlation with growth factor binding. Biochemistry. 1992 Jul 21;31(28):6498–6503. doi: 10.1021/bi00143a020. [DOI] [PubMed] [Google Scholar]
  6. Bielicki J., Freeman C., Clements P. R., Hopwood J. J. Human liver iduronate-2-sulphatase. Purification, characterization and catalytic properties. Biochem J. 1990 Oct 1;271(1):75–86. doi: 10.1042/bj2710075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Castellot J. J., Jr, Favreau L. V., Karnovsky M. J., Rosenberg R. D. Inhibition of vascular smooth muscle cell growth by endothelial cell-derived heparin. Possible role of a platelet endoglycosidase. J Biol Chem. 1982 Oct 10;257(19):11256–11260. [PubMed] [Google Scholar]
  8. Clements P. R., Brooks D. A., Saccone G. T., Hopwood J. J. Human alpha-L-iduronidase. 1. Purification, monoclonal antibody production, native and subunit molecular mass. Eur J Biochem. 1985 Oct 1;152(1):21–28. doi: 10.1111/j.1432-1033.1985.tb09158.x. [DOI] [PubMed] [Google Scholar]
  9. Crissman J. D., Hatfield J., Schaldenbrand M., Sloane B. F., Honn K. V. Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab Invest. 1985 Oct;53(4):470–478. [PubMed] [Google Scholar]
  10. Diment S., Leech M. S., Stahl P. D. Cathepsin D is membrane-associated in macrophage endosomes. J Biol Chem. 1988 May 15;263(14):6901–6907. [PubMed] [Google Scholar]
  11. Eldor A., Bar-Ner M., Yahalom J., Fuks Z., Vlodavsky I. Role of heparanase in platelet and tumor cell interactions with the subendothelial extracellular matrix. Semin Thromb Hemost. 1987 Oct;13(4):475–488. doi: 10.1055/s-2007-1003524. [DOI] [PubMed] [Google Scholar]
  12. Erickson A. H., Ginns E. I., Barranger J. A. Biosynthesis of the lysosomal enzyme glucocerebrosidase. J Biol Chem. 1985 Nov 15;260(26):14319–14324. [PubMed] [Google Scholar]
  13. Freeman C., Hopwood J. J. Human liver N-acetylglucosamine-6-sulphate sulphatase. Catalytic properties. Biochem J. 1987 Sep 1;246(2):355–365. doi: 10.1042/bj2460355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Freeman C., Hopwood J. J. Human liver glucuronate 2-sulphatase. Purification, characterization and catalytic properties. Biochem J. 1989 Apr 1;259(1):209–216. doi: 10.1042/bj2590209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Freeman C., Hopwood J. J. Human liver sulphamate sulphohydrolase. Determinations of native protein and subunit Mr values and influence of substrate agylcone structure on catalytic properties. Biochem J. 1986 Feb 15;234(1):83–92. doi: 10.1042/bj2340083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Freeman C., Parish C. R. A rapid quantitative assay for the detection of mammalian heparanase activity. Biochem J. 1997 Jul 1;325(Pt 1):229–237. doi: 10.1042/bj3250229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gallagher J. T., Walker A., Lyon M., Evans W. H. Heparan sulphate-degrading endoglycosidase in liver plasma membranes. Biochem J. 1988 Mar 15;250(3):719–726. doi: 10.1042/bj2500719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gamse G., Fromme H. G., Kresse H. Metabolism of sulfated glycosaminoglycans in cultured endothelial cells and smooth muscle cells from bovine aorta. Biochim Biophys Acta. 1978 Dec 18;544(3):514–528. doi: 10.1016/0304-4165(78)90326-4. [DOI] [PubMed] [Google Scholar]
  19. Gasic G. J., Gasic T. B., Stewart C. C. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A. 1968 Sep;61(1):46–52. doi: 10.1073/pnas.61.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gilat D., Hershkoviz R., Goldkorn I., Cahalon L., Korner G., Vlodavsky I., Lider O. Molecular behavior adapts to context: heparanase functions as an extracellular matrix-degrading enzyme or as a T cell adhesion molecule, depending on the local pH. J Exp Med. 1995 May 1;181(5):1929–1934. doi: 10.1084/jem.181.5.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Godder K., Vlodavsky I., Eldor A., Weksler B. B., Haimovitz-Freidman A., Fuks Z. Heparanase activity in cultured endothelial cells. J Cell Physiol. 1991 Aug;148(2):274–280. doi: 10.1002/jcp.1041480213. [DOI] [PubMed] [Google Scholar]
  22. Graham L. D., Hayward I. P., Underwood P. A. Activation of platelet heparitinase by vascular cell lysates. Biochem Mol Biol Int. 1995 Oct;37(2):231–237. [PubMed] [Google Scholar]
  23. Graham L. D., Mitchell S. M., Underwood P. A. Inhibition of platelet heparitinase by phosphorothioate DNA oligonucleotides. Biochem Mol Biol Int. 1995 Oct;37(2):239–246. [PubMed] [Google Scholar]
  24. Graham L. D., Underwood P. A. Comparison of the heparanase enzymes from mouse melanoma cells, mouse macrophages, and human platelets. Biochem Mol Biol Int. 1996 Jun;39(3):563–571. doi: 10.1080/15216549600201621. [DOI] [PubMed] [Google Scholar]
  25. Haimovitz-Friedman A., Falcone D. J., Eldor A., Schirrmacher V., Vlodavsky I., Fuks Z. Activation of platelet heparitinase by tumor cell-derived factors. Blood. 1991 Aug 1;78(3):789–796. [PubMed] [Google Scholar]
  26. Hennes R., Frantzen F., Keller R., Schirrmacher V., Schwartz-Albiez R. Matrix heparan sulphate, but not endothelial cell surface heparan sulphate, is degraded by highly metastatic mouse lymphoma cells. Br J Cancer. 1988 Aug;58(2):186–188. doi: 10.1038/bjc.1988.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hoogewerf A. J., Leone J. W., Reardon I. M., Howe W. J., Asa D., Heinrikson R. L., Ledbetter S. R. CXC chemokines connective tissue activating peptide-III and neutrophil activating peptide-2 are heparin/heparan sulfate-degrading enzymes. J Biol Chem. 1995 Feb 17;270(7):3268–3277. doi: 10.1074/jbc.270.7.3268. [DOI] [PubMed] [Google Scholar]
  28. Hopwood J. J., Elliott H. Radiolabelled oligosaccharides as substrates for the estimation of sulfamidase and the detection of the Sanfilippo type A syndrome. Clin Chim Acta. 1981 Apr 27;112(1):55–66. doi: 10.1016/0009-8981(81)90268-0. [DOI] [PubMed] [Google Scholar]
  29. Hök M., Lindahl U., Iverius P. H. Distribution of sulphate and iduronic acid residues in heparin and heparan sulphate. Biochem J. 1974 Jan;137(1):33–43. doi: 10.1042/bj1370033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Irimura T., Nakajima M., Nicolson G. L. Chemically modified heparins as inhibitors of heparan sulfate specific endo-beta-glucuronidase (heparanase) of metastatic melanoma cells. Biochemistry. 1986 Sep 9;25(18):5322–5328. doi: 10.1021/bi00366a050. [DOI] [PubMed] [Google Scholar]
  31. Jin L., Nakajima M., Nicolson G. L. Immunochemical localization of heparanase in mouse and human melanomas. Int J Cancer. 1990 Jun 15;45(6):1088–1095. doi: 10.1002/ijc.2910450618. [DOI] [PubMed] [Google Scholar]
  32. Karamanos N. K., Hjerpe A., Tsegenidis T., Engfeldt B., Antonopoulos C. A. Determination of iduronic acid and glucuronic acid in glycosaminoglycans after stoichiometric reduction and depolymerization using high-performance liquid chromatography and ultraviolet detection. Anal Biochem. 1988 Aug 1;172(2):410–419. doi: 10.1016/0003-2697(88)90463-0. [DOI] [PubMed] [Google Scholar]
  33. Karpatkin S., Pearlstein E., Ambrogio C., Coller B. S. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest. 1988 Apr;81(4):1012–1019. doi: 10.1172/JCI113411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Keller R., Silbert J. E., Furthmayr H., Madri J. A. Aortic endothelial cell proteoheparan sulfate. I. Isolation and characterization of plasmamembrane-associated and extracellular species. Am J Pathol. 1987 Aug;128(2):286–298. [PMC free article] [PubMed] [Google Scholar]
  35. Kjellén L., Pertoft H., Oldberg A., Hök M. Oligosaccharides generated by an endoglucuronidase are intermediates in the intracellular degradation of heparan sulfate proteoglycans. J Biol Chem. 1985 Jul 15;260(14):8416–8422. [PubMed] [Google Scholar]
  36. Klein U., Kresse H., von Figura K. Evidence for degradation of heparan sulfate by endoglycosidases: glucosamine and hexuronic acid are reducing terminals of intracellular heparan sulfate from human skin fibroblasts. Biochem Biophys Res Commun. 1976 Mar 8;69(1):158–166. doi: 10.1016/s0006-291x(76)80286-0. [DOI] [PubMed] [Google Scholar]
  37. Klein U., Von Figura K. Partial purification and characterization of heparan sulfate specific endoglucuronidase. Biochem Biophys Res Commun. 1976 Dec 6;73(3):569–576. doi: 10.1016/0006-291x(76)90848-2. [DOI] [PubMed] [Google Scholar]
  38. Klein U., von Figura K. Substrate specificity of a heparan sulfate-degrading endoglucuronidase from human placenta. Hoppe Seylers Z Physiol Chem. 1979 Oct;360(10):1465–1471. doi: 10.1515/bchm2.1979.360.2.1465. [DOI] [PubMed] [Google Scholar]
  39. Kristensen H. I., Tromborg E. M., Nielsen J. R., Nielsen J. I., Johansen K. B., Ostergaard P. B. Development and validation of a size exclusion chromatography method for determination of molecular masses and molecular mass distribution in low molecular weight heparin. Thromb Res. 1991 Oct 15;64(2):131–141. doi: 10.1016/0049-3848(91)90113-b. [DOI] [PubMed] [Google Scholar]
  40. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  41. Lapierre F., Holme K., Lam L., Tressler R. J., Storm N., Wee J., Stack R. J., Castellot J., Tyrrell D. J. Chemical modifications of heparin that diminish its anticoagulant but preserve its heparanase-inhibitory, angiostatic, anti-tumor and anti-metastatic properties. Glycobiology. 1996 Apr;6(3):355–366. doi: 10.1093/glycob/6.3.355. [DOI] [PubMed] [Google Scholar]
  42. Laskov R., Michaeli R. I., Sharir H., Yefenof E., Vlodavsky I. Production of heparanase by normal and neoplastic murine B-lymphocytes. Int J Cancer. 1991 Jan 2;47(1):92–98. doi: 10.1002/ijc.2910470117. [DOI] [PubMed] [Google Scholar]
  43. Matzner Y., Bar-Ner M., Yahalom J., Ishai-Michaeli R., Fuks Z., Vlodavsky I. Degradation of heparan sulfate in the subendothelial extracellular matrix by a readily released heparanase from human neutrophils. Possible role in invasion through basement membranes. J Clin Invest. 1985 Oct;76(4):1306–1313. doi: 10.1172/JCI112104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Matzner Y., Vlodavsky I., Bar-Ner M., Ishai-Michaeli R., Tauber A. I. Subcellular localization of heparanase in human neutrophils. J Leukoc Biol. 1992 Jun;51(6):519–524. doi: 10.1002/jlb.51.6.519. [DOI] [PubMed] [Google Scholar]
  45. Nakajima M., Irimura T., Di Ferrante D., Di Ferrante N., Nicolson G. L. Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science. 1983 May 6;220(4597):611–613. doi: 10.1126/science.6220468. [DOI] [PubMed] [Google Scholar]
  46. Nakajima M., Irimura T., Di Ferrante N., Nicolson G. L. Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J Biol Chem. 1984 Feb 25;259(4):2283–2290. [PubMed] [Google Scholar]
  47. Nakajima M., Irimura T., Nicolson G. L. A solid-phase substrate of heparanase: its application to assay of human melanoma for heparan sulfate degradative activity. Anal Biochem. 1986 Aug 15;157(1):162–171. doi: 10.1016/0003-2697(86)90209-5. [DOI] [PubMed] [Google Scholar]
  48. Nakajima M., Irimura T., Nicolson G. L. Heparanases and tumor metastasis. J Cell Biochem. 1988 Feb;36(2):157–167. doi: 10.1002/jcb.240360207. [DOI] [PubMed] [Google Scholar]
  49. Nakajima M., Irimura T., Nicolson G. L. Tumor metastasis-associated heparanase (heparan sulfate endoglycosidase) activity in human melanoma cells. Cancer Lett. 1986 Jun;31(3):277–283. doi: 10.1016/0304-3835(86)90148-5. [DOI] [PubMed] [Google Scholar]
  50. Nakajima M., Welch D. R., Irimura T., Nicolson G. L. Basement membrane degradative enzymes as possible markers of tumor metastasis. Prog Clin Biol Res. 1986;212:113–122. [PubMed] [Google Scholar]
  51. Naparstek Y., Cohen I. R., Fuks Z., Vlodavsky I. Activated T lymphocytes produce a matrix-degrading heparan sulphate endoglycosidase. Nature. 1984 Jul 19;310(5974):241–244. doi: 10.1038/310241a0. [DOI] [PubMed] [Google Scholar]
  52. Oldberg A., Heldin C. H., Wasteson A., Busch C., Hök M. Characterization of a platelet endoglycosidase degrading heparin-like polysaccharides. Biochemistry. 1980 Dec 9;19(25):5755–5762. doi: 10.1021/bi00566a014. [DOI] [PubMed] [Google Scholar]
  53. Oosta G. M., Favreau L. V., Beeler D. L., Rosenberg R. D. Purification and properties of human platelet heparitinase. J Biol Chem. 1982 Oct 10;257(19):11249–11255. [PubMed] [Google Scholar]
  54. Parish C. R., Coombe D. R., Jakobsen K. B., Bennett F. A., Underwood P. A. Evidence that sulphated polysaccharides inhibit tumour metastasis by blocking tumour-cell-derived heparanases. Int J Cancer. 1987 Oct 15;40(4):511–518. doi: 10.1002/ijc.2910400414. [DOI] [PubMed] [Google Scholar]
  55. Pearlstein E., Ambrogio C., Karpatkin S. Effect of antiplatelet antibody on the development of pulmonary metastases following injection of CT26 colon adenocarcinoma, Lewis lung carcinoma, and B16 amelanotic melanoma tumor cells into mice. Cancer Res. 1984 Sep;44(9):3884–3887. [PubMed] [Google Scholar]
  56. Peters C., Braun M., Weber B., Wendland M., Schmidt B., Pohlmann R., Waheed A., von Figura K. Targeting of a lysosomal membrane protein: a tyrosine-containing endocytosis signal in the cytoplasmic tail of lysosomal acid phosphatase is necessary and sufficient for targeting to lysosomes. EMBO J. 1990 Nov;9(11):3497–3506. doi: 10.1002/j.1460-2075.1990.tb07558.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Ricoveri W., Cappelletti R. Heparan sulfate endoglycosidase and metastatic potential in murine fibrosarcoma and melanoma. Cancer Res. 1986 Aug;46(8):3855–3861. [PubMed] [Google Scholar]
  58. Rijnboutt S., Aerts H. M., Geuze H. J., Tager J. M., Strous G. J. Mannose 6-phosphate-independent membrane association of cathepsin D, glucocerebrosidase, and sphingolipid-activating protein in HepG2 cells. J Biol Chem. 1991 Mar 15;266(8):4862–4868. [PubMed] [Google Scholar]
  59. Sewell R. F., Brenchley P. E., Mallick N. P. Human mononuclear cells contain an endoglycosidase specific for heparan sulphate glycosaminoglycan demonstrable with the use of a specific solid-phase metabolically radiolabelled substrate. Biochem J. 1989 Dec 15;264(3):777–783. doi: 10.1042/bj2640777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Tanaka N. G., Tohgo A., Ogawa H. Platelet-aggregating activities of metastasizing tumor cells. V. In situ roles of platelets in hematogenous metastases. Invasion Metastasis. 1986;6(4):209–224. [PubMed] [Google Scholar]
  61. Thunberg L., Bäckström G., Wasteson A., Robinson H. C., Ogren S., Lindahl U. Enzymatic depolymerization of heparin-related polysaccharides. Substrate specificities of mouse mastocytoma and human platelet endo-beta-D-glucuronidases. J Biol Chem. 1982 Sep 10;257(17):10278–10282. [PubMed] [Google Scholar]
  62. Turnbull J. E., Gallagher J. T. Distribution of iduronate 2-sulphate residues in heparan sulphate. Evidence for an ordered polymeric structure. Biochem J. 1991 Feb 1;273(Pt 3):553–559. doi: 10.1042/bj2730553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Turnbull J. E., Gallagher J. T. Molecular organization of heparan sulphate from human skin fibroblasts. Biochem J. 1990 Feb 1;265(3):715–724. doi: 10.1042/bj2650715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Vlodavsky I., Eldor A., Haimovitz-Friedman A., Matzner Y., Ishai-Michaeli R., Lider O., Naparstek Y., Cohen I. R., Fuks Z. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis. 1992;12(2):112–127. [PubMed] [Google Scholar]
  65. Vlodavsky I., Michaeli R. I., Bar-Ner M., Fridman R., Horowitz A. T., Fuks Z., Biran S. Involvement of heparanase in tumor metastasis and angiogenesis. Isr J Med Sci. 1988 Sep-Oct;24(9-10):464–470. [PubMed] [Google Scholar]
  66. Vlodavsky I., Mohsen M., Lider O., Svahn C. M., Ekre H. P., Vigoda M., Ishai-Michaeli R., Peretz T. Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion Metastasis. 1994;14(1-6):290–302. [PubMed] [Google Scholar]
  67. Wasteson A. A method for the determination of the molecular weight and molecular-weight distribution of chondroitin sulphate. J Chromatogr. 1971 Jul 8;59(1):87–97. doi: 10.1016/s0021-9673(01)80009-1. [DOI] [PubMed] [Google Scholar]
  68. Wasteson A., Glimelius B., Busch C., Westermark H., Heldin C. H., Norling B. Effect of a platelet endoglycosidase on cell surface associated heparan sulphate of human culturei endothelial and glial cells. Thromb Res. 1977 Sep;11(3):309–321. doi: 10.1016/0049-3848(77)90184-0. [DOI] [PubMed] [Google Scholar]
  69. Wasteson A., Hök M., Westermark B. Demonstration of a platelet enzyme, degrading heparan sulphate. FEBS Lett. 1976 Apr 15;64(1):218–221. doi: 10.1016/0014-5793(76)80287-6. [DOI] [PubMed] [Google Scholar]
  70. Yahalom J., Eldor A., Biran S., Fuks Z., Vlodavsky I. Platelet-tumor cell interaction with the subendothelial extracellular matrix: relationship to cancer metastasis. Radiother Oncol. 1985 Apr;3(3):211–225. doi: 10.1016/s0167-8140(85)80030-x. [DOI] [PubMed] [Google Scholar]
  71. Yahalom J., Eldor A., Fuks Z., Vlodavsky I. Degradation of sulfated proteoglycans in the subendothelial extracellular matrix by human platelet heparitinase. J Clin Invest. 1984 Nov;74(5):1842–1849. doi: 10.1172/JCI111603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Yanagishita M., Hascall V. C. Metabolism of proteoglycans in rat ovarian granulosa cell culture. Multiple intracellular degradative pathways and the effect of chloroquine. J Biol Chem. 1984 Aug 25;259(16):10270–10283. [PubMed] [Google Scholar]
  73. Yurchenco P. D., Schittny J. C. Molecular architecture of basement membranes. FASEB J. 1990 Apr 1;4(6):1577–1590. doi: 10.1096/fasebj.4.6.2180767. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES