Abstract
Heparin tightly binds cathepsin G and so protects the enzyme from inhibition by alpha1-antichymotrypsin, alpha1-proteinase inhibitor and eglin c, three proteins which do not bind heparin [Ermolieff J., Boudier C., Laine A., Meyer B. and Bieth J.G. (1994) J. Biol. Chem. 269, 29502-29508]. Here we show that heparin no longer protects cathepsin G from inhibition when the enzyme is reacted with mucus proteinase inhibitor (MPI), a heparin-binding protein. Heparin fragments of Mr=4500 and 8100 and O-butyrylated heparin of Mr=8000 form tight complexes with cathepsin G (Kd=0.5-2.2 nM) and MPI (Kd=0. 4-0.8 muM) and accelerate the MPI-promoted inhibition of cathepsin G by a factor of 17-26. They also accelerate the inhibition of neutrophil elastase and pancreatic chymotrypsin. The rate acceleration is due to the binding of heparin to MPI. Butyrylation of heparin slightly decreases its affinity for cathepsin G and MPI but sharply decreases the ionic interactions between the positively charged proteins and the negatively charged polyanion. The butyrylated heparin derivative is the best rate accelerator: it increases the rate constant for the MPI-induced inhibition of cathepsin G and elastase by factors of 26 and 23, respectively. This, together with the fact that it has a good bioavailability and a very low anticoagulant activity, suggests that it might be an adjuvant of MPI-based therapy of cystic fibrosis.
Full Text
The Full Text of this article is available as a PDF (320.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baba M., Pauwels R., Balzarini J., Arnout J., Desmyter J., De Clercq E. Mechanism of inhibitory effect of dextran sulfate and heparin on replication of human immunodeficiency virus in vitro. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6132–6136. doi: 10.1073/pnas.85.16.6132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bangalore N., Travis J. Comparison of properties of membrane bound versus soluble forms of human leukocytic elastase and cathepsin G. Biol Chem Hoppe Seyler. 1994 Oct;375(10):659–666. doi: 10.1515/bchm3.1994.375.10.659. [DOI] [PubMed] [Google Scholar]
- Belorgey D., Bieth J. G. DNA binds neutrophil elastase and mucus proteinase inhibitor and impairs their functional activity. FEBS Lett. 1995 Mar 20;361(2-3):265–268. doi: 10.1016/0014-5793(95)00173-7. [DOI] [PubMed] [Google Scholar]
- Bieth J. G. In vivo significance of kinetic constants of protein proteinase inhibitors. Biochem Med. 1984 Dec;32(3):387–397. doi: 10.1016/0006-2944(84)90046-2. [DOI] [PubMed] [Google Scholar]
- Bode W., Meyer E., Jr, Powers J. C. Human leukocyte and porcine pancreatic elastase: X-ray crystal structures, mechanism, substrate specificity, and mechanism-based inhibitors. Biochemistry. 1989 Mar 7;28(5):1951–1963. doi: 10.1021/bi00431a001. [DOI] [PubMed] [Google Scholar]
- Bârzu T., Level M., Petitou M., Lormeau J. C., Choay J., Schols D., Baba M., Pauwels R., Witvrouw M., De Clercq E. Preparation and anti-HIV activity of O-acylated heparin and dermatan sulfate derivatives with low anticoagulant effect. J Med Chem. 1993 Nov 12;36(23):3546–3555. doi: 10.1021/jm00075a009. [DOI] [PubMed] [Google Scholar]
- Cadène M., Boudier C., de Marcillac G. D., Bieth J. G. Influence of low molecular mass heparin on the kinetics of neutrophil elastase inhibition by mucus proteinase inhibitor. J Biol Chem. 1995 Jun 2;270(22):13204–13209. doi: 10.1074/jbc.270.22.13204. [DOI] [PubMed] [Google Scholar]
- Casu B. Heparin structure. Haemostasis. 1990;20 (Suppl 1):62–73. doi: 10.1159/000216162. [DOI] [PubMed] [Google Scholar]
- Eisenberg S. P., Hale K. K., Heimdal P., Thompson R. C. Location of the protease-inhibitory region of secretory leukocyte protease inhibitor. J Biol Chem. 1990 May 15;265(14):7976–7981. [PubMed] [Google Scholar]
- Ermolieff J., Boudier C., Laine A., Meyer B., Bieth J. G. Heparin protects cathepsin G against inhibition by protein proteinase inhibitors. J Biol Chem. 1994 Nov 25;269(47):29502–29508. [PubMed] [Google Scholar]
- Faller B., Mely Y., Gerard D., Bieth J. G. Heparin-induced conformational change and activation of mucus proteinase inhibitor. Biochemistry. 1992 Sep 8;31(35):8285–8290. doi: 10.1021/bi00150a023. [DOI] [PubMed] [Google Scholar]
- Frommherz K. J., Faller B., Bieth J. G. Heparin strongly decreases the rate of inhibition of neutrophil elastase by alpha 1-proteinase inhibitor. J Biol Chem. 1991 Aug 15;266(23):15356–15362. [PubMed] [Google Scholar]
- Fujinaga M., Chernaia M. M., Halenbeck R., Koths K., James M. N. The crystal structure of PR3, a neutrophil serine proteinase antigen of Wegener's granulomatosis antibodies. J Mol Biol. 1996 Aug 16;261(2):267–278. doi: 10.1006/jmbi.1996.0458. [DOI] [PubMed] [Google Scholar]
- Grütter M. G., Fendrich G., Huber R., Bode W. The 2.5 A X-ray crystal structure of the acid-stable proteinase inhibitor from human mucous secretions analysed in its complex with bovine alpha-chymotrypsin. EMBO J. 1988 Feb;7(2):345–351. doi: 10.1002/j.1460-2075.1988.tb02819.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hof P., Mayr I., Huber R., Korzus E., Potempa J., Travis J., Powers J. C., Bode W. The 1.8 A crystal structure of human cathepsin G in complex with Suc-Val-Pro-PheP-(OPh)2: a Janus-faced proteinase with two opposite specificities. EMBO J. 1996 Oct 15;15(20):5481–5491. [PMC free article] [PubMed] [Google Scholar]
- Huber R., Carrell R. W. Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry. 1989 Nov 14;28(23):8951–8966. doi: 10.1021/bi00449a001. [DOI] [PubMed] [Google Scholar]
- Kramps J. A., Franken C., Dijkman J. H. ELISA for quantitative measurement of low-molecular-weight bronchial protease inhibitor in human sputum. Am Rev Respir Dis. 1984 Jun;129(6):959–963. doi: 10.1164/arrd.1984.129.6.959. [DOI] [PubMed] [Google Scholar]
- McElvaney N. G., Doujaiji B., Moan M. J., Burnham M. R., Wu M. C., Crystal R. G. Pharmacokinetics of recombinant secretory leukoprotease inhibitor aerosolized to normals and individuals with cystic fibrosis. Am Rev Respir Dis. 1993 Oct;148(4 Pt 1):1056–1060. doi: 10.1164/ajrccm/148.4_Pt_1.1056. [DOI] [PubMed] [Google Scholar]
- McElvaney N. G., Nakamura H., Birrer P., Hébert C. A., Wong W. L., Alphonso M., Baker J. B., Catalano M. A., Crystal R. G. Modulation of airway inflammation in cystic fibrosis. In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest. 1992 Oct;90(4):1296–1301. doi: 10.1172/JCI115994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellet P., Ermolieff J., Bieth J. G. Mapping the heparin-binding site of mucus proteinase inhibitor. Biochemistry. 1995 Feb 28;34(8):2645–2652. doi: 10.1021/bi00008a031. [DOI] [PubMed] [Google Scholar]
- Miller K. W., Evans R. J., Eisenberg S. P., Thompson R. C. Secretory leukocyte protease inhibitor binding to mRNA and DNA as a possible cause of toxicity to Escherichia coli. J Bacteriol. 1989 Apr;171(4):2166–2172. doi: 10.1128/jb.171.4.2166-2172.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison J. F., Walsh C. T. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol Relat Areas Mol Biol. 1988;61:201–301. doi: 10.1002/9780470123072.ch5. [DOI] [PubMed] [Google Scholar]
- Olson S. T., Björk I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-thrombin reaction. Elucidation from salt concentration effects. J Biol Chem. 1991 Apr 5;266(10):6353–6364. [PubMed] [Google Scholar]
- Olson S. T., Halvorson H. R., Björk I. Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models. J Biol Chem. 1991 Apr 5;266(10):6342–6352. [PubMed] [Google Scholar]
- Olson S. T., Srinivasan K. R., Björk I., Shore J. D. Binding of high affinity heparin to antithrombin III. Stopped flow kinetic studies of the binding interaction. J Biol Chem. 1981 Nov 10;256(21):11073–11079. [PubMed] [Google Scholar]
- Owen C. A., Campbell M. A., Sannes P. L., Boukedes S. S., Campbell E. J. Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. J Cell Biol. 1995 Nov;131(3):775–789. doi: 10.1083/jcb.131.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pratt C. W., Tobin R. B., Church F. C. Interaction of heparin cofactor II with neutrophil elastase and cathepsin G. J Biol Chem. 1990 Apr 15;265(11):6092–6097. [PubMed] [Google Scholar]
- Record M. T., Jr, Anderson C. F., Lohman T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978 May;11(2):103–178. doi: 10.1017/s003358350000202x. [DOI] [PubMed] [Google Scholar]
- Record M. T., Jr, Lohman M. L., De Haseth P. Ion effects on ligand-nucleic acid interactions. J Mol Biol. 1976 Oct 25;107(2):145–158. doi: 10.1016/s0022-2836(76)80023-x. [DOI] [PubMed] [Google Scholar]
- Stein P. L., van Zonneveld A. J., Pannekoek H., Strickland S. Structural domains of human tissue-type plasminogen activator that confer stimulation by heparin. J Biol Chem. 1989 Sep 15;264(26):15441–15444. [PubMed] [Google Scholar]
- Thompson L. D., Pantoliano M. W., Springer B. A. Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain. Biochemistry. 1994 Apr 5;33(13):3831–3840. doi: 10.1021/bi00179a006. [DOI] [PubMed] [Google Scholar]
- Tournier J. M., Jacquot J., Puchelle E., Bieth J. G. Evidence that Pseudomonas aeruginosa elastase does not inactivate the bronchial inhibitor in the presence of leukocyte elastase. Studies with cystic fibrosis sputum and with pure proteins. Am Rev Respir Dis. 1985 Sep;132(3):524–528. doi: 10.1164/arrd.1985.132.3.524. [DOI] [PubMed] [Google Scholar]
- Tyrell D. J., Kilfeather S., Page C. P. Therapeutic uses of heparin beyond its traditional role as an anticoagulant. Trends Pharmacol Sci. 1995 Jun;16(6):198–204. doi: 10.1016/s0165-6147(00)89022-7. [DOI] [PubMed] [Google Scholar]
- Van-Seuningen I., Aubert J. P., Davril M. Interaction between secretory leucocyte proteinase inhibitor and bronchial mucins or glycopeptides. Physiopathological implications for the protection of mucins against proteolysis by human leucocyte elastase. Biochem J. 1992 Feb 1;281(Pt 3):761–766. doi: 10.1042/bj2810761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter M., Plotnick M., Schechter N. M. Inhibition of human mast cell chymase by secretory leukocyte proteinase inhibitor: enhancement of the interaction by heparin. Arch Biochem Biophys. 1996 Mar 1;327(1):81–88. doi: 10.1006/abbi.1996.0095. [DOI] [PubMed] [Google Scholar]
- Wintroub B. U., Klickstein L. B., Dzau V. J., Watt K. W. Granulocyte-angiotensin system. Identification of angiotensinogen as the plasma protein substrate of leukocyte cathepsin G. Biochemistry. 1984 Jan 17;23(2):227–232. doi: 10.1021/bi00297a009. [DOI] [PubMed] [Google Scholar]