Abstract
The nucleotide sequences of xylB and xylC from Acinetobacter calcoaceticus, the genes encoding benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II, were determined. The complete nucleotide sequence indicates that these two genes form part of an operon and this was supported by heterologous expression and physiological studies. Benzaldehyde dehydrogenase II is a 51654 Da protein with 484 amino acids per subunit and it is typical of other prokaryotic and eukaryotic aldehyde dehydrogenases. Benzyl alcohol dehydrogenase has a subunit Mr of 38923 consisting of 370 amino acids, it stereospecifically transfers the proR hydride of NADH, and it is a member of the family of zinc-dependent long-chain alcohol dehydrogenases. The enzyme appears to be more similar to animal and higher-plant alcohol dehydrogenases than it is to most other microbial alcohol dehydrogenases. Residue His-51 of zinc-dependent alcohol dehydrogenases is thought to be necessary as a general base for catalysis in this category of alcohol dehydrogenases. However, this residue was found to be replaced in benzyl alcohol dehydrogenase from A. calcoaceticus by an isoleucine, and the introduction of a histidine residue in this position did not alter the kinetic coefficients, pH optimum or substrate specificity of the enzyme. Other workers have shown that His-51 is also absent from the TOL-plasmid-encoded benzyl alcohol dehydrogenase of Pseudomonas putida and so these two closely related enzymes presumably have a catalytic mechanism that differs from that of the archetypal zinc-dependent alcohol dehydrogenases.
Full Text
The Full Text of this article is available as a PDF (626.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson B. D., Somerville R. L., Epperly B. R., Dekker E. E. The primary structure of Escherichia coli L-threonine dehydrogenase. J Biol Chem. 1989 Mar 25;264(9):5226–5232. [PubMed] [Google Scholar]
- Assinder S. J., Williams P. A. The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol. 1990;31:1–69. doi: 10.1016/s0065-2911(08)60119-8. [DOI] [PubMed] [Google Scholar]
- Baker D. P., Kleanthous C., Keen J. N., Weinhold E., Fewson C. A. Mechanistic and active-site studies on D(--)-mandelate dehydrogenase from Rhodotorula graminis. Biochem J. 1992 Jan 1;281(Pt 1):211–218. doi: 10.1042/bj2810211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beggs J. D., Cook A. M., Fewson C. A. Regulation of growth of Acinetobacter calcoaceticus NCIB8250 on benzyl alcohol in batch culture. J Gen Microbiol. 1976 Oct;96(2):365–374. doi: 10.1099/00221287-96-2-365. [DOI] [PubMed] [Google Scholar]
- Brendel V., Trifonov E. N. A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res. 1984 May 25;12(10):4411–4427. doi: 10.1093/nar/12.10.4411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brockbank S. M., Barth P. T. Cloning, sequencing, and expression of the DNA gyrase genes from Staphylococcus aureus. J Bacteriol. 1993 Jun;175(11):3269–3277. doi: 10.1128/jb.175.11.3269-3277.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chalmers R. M., Keen J. N., Fewson C. A. Comparison of benzyl alcohol dehydrogenases and benzaldehyde dehydrogenases from the benzyl alcohol and mandelate pathways in Acinetobacter calcoaceticus and from the TOL-plasmid-encoded toluene pathway in Pseudomonas putida. N-terminal amino acid sequences, amino acid compositions and immunological cross-reactions. Biochem J. 1991 Jan 1;273(Pt 1):99–107. doi: 10.1042/bj2730099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ditlow C. C., Holmquist B., Morelock M. M., Vallee B. L. Physical and enzymatic properties of a class II alcohol dehydrogenase isozyme of human liver: pi-ADH. Biochemistry. 1984 Dec 18;23(26):6363–6368. doi: 10.1021/bi00321a012. [DOI] [PubMed] [Google Scholar]
- Eklund H., Müller-Wille P., Horjales E., Futer O., Holmquist B., Vallee B. L., Hög J. O., Kaiser R., Jörnvall H. Comparison of three classes of human liver alcohol dehydrogenase. Emphasis on different substrate binding pockets. Eur J Biochem. 1990 Oct 24;193(2):303–310. doi: 10.1111/j.1432-1033.1990.tb19337.x. [DOI] [PubMed] [Google Scholar]
- Eklund H., Nordström B., Zeppezauer E., Söderlund G., Ohlsson I., Boiwe T., Söderberg B. O., Tapia O., Brändén C. I., Akeson A. Three-dimensional structure of horse liver alcohol dehydrogenase at 2-4 A resolution. J Mol Biol. 1976 Mar 25;102(1):27–59. doi: 10.1016/0022-2836(76)90072-3. [DOI] [PubMed] [Google Scholar]
- Eklund H., Plapp B. V., Samama J. P., Brändén C. I. Binding of substrate in a ternary complex of horse liver alcohol dehydrogenase. J Biol Chem. 1982 Dec 10;257(23):14349–14358. [PubMed] [Google Scholar]
- Eklund H., Samama J. P., Jones T. A. Crystallographic investigations of nicotinamide adenine dinucleotide binding to horse liver alcohol dehydrogenase. Biochemistry. 1984 Dec 4;23(25):5982–5996. doi: 10.1021/bi00320a014. [DOI] [PubMed] [Google Scholar]
- Eklund H., Samma J. P., Wallén L., Brändén C. I., Akeson A., Jones T. A. Structure of a triclinic ternary complex of horse liver alcohol dehydrogenase at 2.9 A resolution. J Mol Biol. 1981 Mar 15;146(4):561–587. doi: 10.1016/0022-2836(81)90047-4. [DOI] [PubMed] [Google Scholar]
- Fewson C. A. The growth and metabolic versatility of the gram-negative Bacterium NCIB 8250 ("Vibrio 01"). J Gen Microbiol. 1967 Feb;46(2):255–266. doi: 10.1099/00221287-46-2-255. [DOI] [PubMed] [Google Scholar]
- Green D. W., Sun H. W., Plapp B. V. Inversion of the substrate specificity of yeast alcohol dehydrogenase. J Biol Chem. 1993 Apr 15;268(11):7792–7798. [PubMed] [Google Scholar]
- Harayama S., Rekik M., Wubbolts M., Rose K., Leppik R. A., Timmis K. N. Characterization of five genes in the upper-pathway operon of TOL plasmid pWW0 from Pseudomonas putida and identification of the gene products. J Bacteriol. 1989 Sep;171(9):5048–5055. doi: 10.1128/jb.171.9.5048-5055.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hempel J., Nicholas H., Lindahl R. Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework. Protein Sci. 1993 Nov;2(11):1890–1900. doi: 10.1002/pro.5560021111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jörnvall H., Eklund H., Brändén C. I. Subunit conformation of yeast alcohol dehydrogenase. J Biol Chem. 1978 Dec 10;253(23):8414–8419. [PubMed] [Google Scholar]
- Krell T., Pitt A. R., Coggins J. R. The use of electrospray mass spectrometry to identify an essential arginine residue in type II dehydroquinases. FEBS Lett. 1995 Feb 20;360(1):93–96. doi: 10.1016/0014-5793(95)00083-l. [DOI] [PubMed] [Google Scholar]
- Livingstone A., Fewson C. A., Kennedy S. I., Zatman L. J. Two benzaldehyde dehydrogenases in bacterium N.C.I.B. 8250. Distinguishing properties and regulation. Biochem J. 1972 Dec;130(4):927–935. doi: 10.1042/bj1300927. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacKintosh R. W., Fewson C. A. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Purification and preliminary characterization. Biochem J. 1988 Mar 15;250(3):743–751. doi: 10.1042/bj2500743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacKintosh R. W., Fewson C. A. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from Acinetobacter calcoaceticus. Substrate specificities and inhibition studies. Biochem J. 1988 Oct 15;255(2):653–661. [PMC free article] [PubMed] [Google Scholar]
- Plapp B. V. Enhancement of the activity of horse liver alcohol dehydrogenase by modification of amino groups at the active sites. J Biol Chem. 1970 Apr 10;245(7):1727–1735. [PubMed] [Google Scholar]
- Ramaswamy S., Eklund H., Plapp B. V. Structures of horse liver alcohol dehydrogenase complexed with NAD+ and substituted benzyl alcohols. Biochemistry. 1994 May 3;33(17):5230–5237. doi: 10.1021/bi00183a028. [DOI] [PubMed] [Google Scholar]
- Reid M. F., Fewson C. A. Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol. 1994;20(1):13–56. doi: 10.3109/10408419409113545. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw J. P., Harayama S. Purification and characterisation of TOL plasmid-encoded benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase of Pseudomonas putida. Eur J Biochem. 1990 Aug 17;191(3):705–714. doi: 10.1111/j.1432-1033.1990.tb19179.x. [DOI] [PubMed] [Google Scholar]
- Shaw J. P., Rekik M., Schwager F., Harayama S. Kinetic studies on benzyl alcohol dehydrogenase encoded by TOL plasmid pWWO. A member of the zinc-containing long chain alcohol dehydrogenase family. J Biol Chem. 1993 May 25;268(15):10842–10850. [PubMed] [Google Scholar]
- Shaw J. P., Schwager F., Harayama S. Substrate-specificity of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase encoded by TOL plasmid pWW0. Metabolic and mechanistic implications. Biochem J. 1992 May 1;283(Pt 3):789–794. doi: 10.1042/bj2830789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsou A. Y., Ransom S. C., Gerlt J. A., Buechter D. D., Babbitt P. C., Kenyon G. L. Mandelate pathway of Pseudomonas putida: sequence relationships involving mandelate racemase, (S)-mandelate dehydrogenase, and benzoylformate decarboxylase and expression of benzoylformate decarboxylase in Escherichia coli. Biochemistry. 1990 Oct 23;29(42):9856–9862. doi: 10.1021/bi00494a015. [DOI] [PubMed] [Google Scholar]
- Weiner H., Farrés J., Rout U. J., Wang X., Zheng C. F. Site directed mutagenesis to probe for active site components of liver mitochondrial aldehyde dehydrogenase. Adv Exp Med Biol. 1995;372:1–7. doi: 10.1007/978-1-4615-1965-2_1. [DOI] [PubMed] [Google Scholar]
- Weinhold E. G., Benner S. A. Engineering yeast alcohol dehydrogenase. Replacing Trp54 by Leu broadens substrate specificity. Protein Eng. 1995 May;8(5):457–461. doi: 10.1093/protein/8.5.457. [DOI] [PubMed] [Google Scholar]