Abstract
The leucoyte surface antigen CD38 has been shown to be an ecto-enzyme with multiple catalytic activities. It is principally a NAD+ glycohydrolase that transforms NAD+ into ADP-ribose and nicotinamide. CD38 is also able to produce small amounts of cyclic ADP-ribose (ADP-ribosyl cyclase activity) and to hydrolyse this cyclic metabolite into ADP-ribose (cyclic ADP-ribose hydrolase activity). To classify CD38 among the enzymes that transfer the ADP-ribosyl moiety of NAD+ to a variety of acceptors, we have investigated its substrate specificity and some characteristics of its kinetic and molecular mechanisms. We find that CD38-catalysed cleavage of the nicotinamide-ribose bond results in the formation of an E.ADP-ribosyl intermediary complex, which is common to all reaction pathways; this intermediate reacts (1) with acceptors such as water (hydrolysis), methanol (methanolysis) or pyridine (transglycosidation), and (2) intramolecularly, yielding cyclic ADP-ribose with a low efficiency. This reaction scheme is also followed when using nicotinamide guanine dinucleotide as an alternative substrate; in this case, however, the cyclization process is highly favoured. The results obtained here are not compatible with the prevailing model for the mode of action of CD38, according to which this enzyme produces first cyclic ADP-ribose which is then immediately hydrolysed into ADP-ribose (i.e. sequential ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities). We show instead that the cyclic metabolite was a reaction product of CD38 rather than an obligatory reaction intermediate during the glycohydrolase activity. Altogether our results lead to the conclusion that CD38 is an authentic 'classical' NAD(P)+ glycohydrolase (EC 3.2.2.6).
Full Text
The Full Text of this article is available as a PDF (390.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aarhus R., Graeff R. M., Dickey D. M., Walseth T. F., Lee H. C. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem. 1995 Dec 22;270(51):30327–30333. doi: 10.1074/jbc.270.51.30327. [DOI] [PubMed] [Google Scholar]
- Alessio M., Roggero S., Funaro A., De Monte L. B., Peruzzi L., Geuna M., Malavasi F. CD38 molecule: structural and biochemical analysis on human T lymphocytes, thymocytes, and plasma cells. J Immunol. 1990 Aug 1;145(3):878–884. [PubMed] [Google Scholar]
- Boumsell L., Schmid M., Dastot H., Gouttefangeas C., Mathieu-Mahul D., Bensussan A. In vitro differentiation from a pluripotent human CD4+CD8+ thymic cloned cell into four phenotypically distinct subsets. J Immunol. 1990 Nov 1;145(9):2797–2802. [PubMed] [Google Scholar]
- Chini E. N., Dousa T. P. Enzymatic synthesis and degradation of nicotinate adenine dinucleotide phosphate (NAADP), a Ca(2+)-releasing agonist, in rat tissues. Biochem Biophys Res Commun. 1995 Apr 6;209(1):167–174. doi: 10.1006/bbrc.1995.1485. [DOI] [PubMed] [Google Scholar]
- Deaglio S., Dianzani U., Horenstein A. L., Fernández J. E., van Kooten C., Bragardo M., Funaro A., Garbarino G., Di Virgilio F., Banchereau J. Human CD38 ligand. A 120-KDA protein predominantly expressed on endothelial cells. J Immunol. 1996 Jan 15;156(2):727–734. [PubMed] [Google Scholar]
- Deterre P., Gelman L., Gary-Gouy H., Arrieumerlou C., Berthelier V., Tixier J. M., Ktorza S., Goding J., Schmitt C., Bismuth G. Coordinated regulation in human T cells of nucleotide-hydrolyzing ecto-enzymatic activities, including CD38 and PC-1. Possible role in the recycling of nicotinamide adenine dinucleotide metabolites. J Immunol. 1996 Aug 15;157(4):1381–1388. [PubMed] [Google Scholar]
- Franco L., Zocchi E., Calder L., Guida L., Benatti U., De Flora A. Self-aggregation of the transmembrane glycoprotein CD38 purified from human erythrocytes. Biochem Biophys Res Commun. 1994 Aug 15;202(3):1710–1715. doi: 10.1006/bbrc.1994.2132. [DOI] [PubMed] [Google Scholar]
- Galione A. Cyclic ADP-ribose: a new way to control calcium. Science. 1993 Jan 15;259(5093):325–326. doi: 10.1126/science.8380506. [DOI] [PubMed] [Google Scholar]
- Graeff R. M., Mehta K., Lee H. C. GDP-ribosyl cyclase activity as a measure of CD38 induction by retinoic acid in HL-60 cells. Biochem Biophys Res Commun. 1994 Nov 30;205(1):722–727. doi: 10.1006/bbrc.1994.2725. [DOI] [PubMed] [Google Scholar]
- Graeff R. M., Walseth T. F., Fryxell K., Branton W. D., Lee H. C. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem. 1994 Dec 2;269(48):30260–30267. [PubMed] [Google Scholar]
- Graeff R. M., Walseth T. F., Hill H. K., Lee H. C. Fluorescent analogs of cyclic ADP-ribose: synthesis, spectral characterization, and use. Biochemistry. 1996 Jan 16;35(2):379–386. doi: 10.1021/bi952083f. [DOI] [PubMed] [Google Scholar]
- Green S., Dobrjansky A. Inactivation of nicotinamide-adenine dinucleotide glycohydrolase from livers of different mammalian species by nicotinamide-adenine dinucleotide. Biochemistry. 1971 Nov 23;10(24):4533–4538. doi: 10.1021/bi00800a029. [DOI] [PubMed] [Google Scholar]
- Grimaldi J. C., Balasubramanian S., Kabra N. H., Shanafelt A., Bazan J. F., Zurawski G., Howard M. C. CD38-mediated ribosylation of proteins. J Immunol. 1995 Jul 15;155(2):811–817. [PubMed] [Google Scholar]
- Han M. K., Lee J. Y., Cho Y. S., Song Y. M., An N. H., Kim H. R., Kim U. H. Regulation of NAD+ glycohydrolase activity by NAD(+)-dependent auto-ADP-ribosylation. Biochem J. 1996 Sep 15;318(Pt 3):903–908. doi: 10.1042/bj3180903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard M., Grimaldi J. C., Bazan J. F., Lund F. E., Santos-Argumedo L., Parkhouse R. M., Walseth T. F., Lee H. C. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science. 1993 Nov 12;262(5136):1056–1059. doi: 10.1126/science.8235624. [DOI] [PubMed] [Google Scholar]
- Inageda K., Takahashi K., Tokita K., Nishina H., Kanaho Y., Kukimoto I., Kontani K., Hoshino S., Katada T. Enzyme properties of Aplysia ADP-ribosyl cyclase: comparison with NAD glycohydrolase of CD38 antigen. J Biochem. 1995 Jan;117(1):125–131. doi: 10.1093/oxfordjournals.jbchem.a124698. [DOI] [PubMed] [Google Scholar]
- Jackson D. G., Bell J. I. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J Immunol. 1990 Apr 1;144(7):2811–2815. [PubMed] [Google Scholar]
- Kato I., Takasawa S., Akabane A., Tanaka O., Abe H., Takamura T., Suzuki Y., Nata K., Yonekura H., Yoshimoto T. Regulatory role of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in insulin secretion by glucose in pancreatic beta cells. Enhanced insulin secretion in CD38-expressing transgenic mice. J Biol Chem. 1995 Dec 15;270(50):30045–30050. doi: 10.1074/jbc.270.50.30045. [DOI] [PubMed] [Google Scholar]
- Kim H., Jacobson E. L., Jacobson M. K. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science. 1993 Sep 3;261(5126):1330–1333. doi: 10.1126/science.8395705. [DOI] [PubMed] [Google Scholar]
- Koguma T., Takasawa S., Tohgo A., Karasawa T., Furuya Y., Yonekura H., Okamoto H. Cloning and characterization of cDNA encoding rat ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (homologue to human CD38) from islets of Langerhans. Biochim Biophys Acta. 1994 Aug 11;1223(1):160–162. doi: 10.1016/0167-4889(94)90087-6. [DOI] [PubMed] [Google Scholar]
- Kontani K., Nishina H., Ohoka Y., Takahashi K., Katada T. NAD glycohydrolase specifically induced by retinoic acid in human leukemic HL-60 cells. Identification of the NAD glycohydrolase as leukocyte cell surface antigen CD38. J Biol Chem. 1993 Aug 15;268(23):16895–16898. [PubMed] [Google Scholar]
- Kramer G., Steiner G., Födinger D., Fiebiger E., Rappersberger C., Binder S., Hofbauer J., Marberger M. High expression of a CD38-like molecule in normal prostatic epithelium and its differential loss in benign and malignant disease. J Urol. 1995 Nov;154(5):1636–1641. [PubMed] [Google Scholar]
- Lee H. C., Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem. 1995 Feb 3;270(5):2152–2157. doi: 10.1074/jbc.270.5.2152. [DOI] [PubMed] [Google Scholar]
- Lee H. C. Cyclic ADP-ribose: a calcium mobilizing metabolite of NAD+. Mol Cell Biochem. 1994 Sep;138(1-2):229–235. doi: 10.1007/BF00928466. [DOI] [PubMed] [Google Scholar]
- Lee H. C., Zocchi E., Guida L., Franco L., Benatti U., De Flora A. Production and hydrolysis of cyclic ADP-ribose at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993 Mar 15;191(2):639–645. doi: 10.1006/bbrc.1993.1265. [DOI] [PubMed] [Google Scholar]
- Lund F., Solvason N., Grimaldi J. C., Parkhouse R. M., Howard M. Murine CD38: an immunoregulatory ectoenzyme. Immunol Today. 1995 Oct;16(10):469–473. doi: 10.1016/0167-5699(95)80029-8. [DOI] [PubMed] [Google Scholar]
- Malavasi F., Funaro A., Roggero S., Horenstein A., Calosso L., Mehta K. Human CD38: a glycoprotein in search of a function. Immunol Today. 1994 Mar;15(3):95–97. doi: 10.1016/0167-5699(94)90148-1. [DOI] [PubMed] [Google Scholar]
- Mehta K., Shahid U., Malavasi F. Human CD38, a cell-surface protein with multiple functions. FASEB J. 1996 Oct;10(12):1408–1417. doi: 10.1096/fasebj.10.12.8903511. [DOI] [PubMed] [Google Scholar]
- Mizuguchi M., Otsuka N., Sato M., Ishii Y., Kon S., Yamada M., Nishina H., Katada T., Ikeda K. Neuronal localization of CD38 antigen in the human brain. Brain Res. 1995 Oct 30;697(1-2):235–240. doi: 10.1016/0006-8993(95)00885-t. [DOI] [PubMed] [Google Scholar]
- Muller-Steffner H. M., Augustin A., Schuber F. Mechanism of cyclization of pyridine nucleotides by bovine spleen NAD+ glycohydrolase. J Biol Chem. 1996 Sep 27;271(39):23967–23972. doi: 10.1074/jbc.271.39.23967. [DOI] [PubMed] [Google Scholar]
- Muller-Steffner H. M., Malver O., Hosie L., Oppenheimer N. J., Schuber F. Slow-binding inhibition of NAD+ glycohydrolase by arabino analogues of beta-NAD. J Biol Chem. 1992 May 15;267(14):9606–9611. [PubMed] [Google Scholar]
- Muller-Steffner H., Muzard M., Oppenheimer N., Schuber F. Mechanistic implications of cyclic ADP-ribose hydrolysis and methanolysis catalyzed by calf spleen NAD+glycohydrolase. Biochem Biophys Res Commun. 1994 Nov 15;204(3):1279–1285. doi: 10.1006/bbrc.1994.2601. [DOI] [PubMed] [Google Scholar]
- Muller H. M., Muller C. D., Schuber F. NAD+ glycohydrolase, an ecto-enzyme of calf spleen cells. Biochem J. 1983 May 15;212(2):459–464. doi: 10.1042/bj2120459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pascal M., Schuber F. The stereochemistry of calf spleen NAD-glycohydrolase-catalyzed NAD methanolysis. FEBS Lett. 1976 Jul 1;66(1):107–109. doi: 10.1016/0014-5793(76)80596-0. [DOI] [PubMed] [Google Scholar]
- Randall T. D., Lund F. E., Howard M. C., Weissman I. L. Expression of murine CD38 defines a population of long-term reconstituting hematopoietic stem cells. Blood. 1996 May 15;87(10):4057–4067. [PubMed] [Google Scholar]
- Sitsapesan R., McGarry S. J., Williams A. J. Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release. Trends Pharmacol Sci. 1995 Nov;16(11):386–391. doi: 10.1016/s0165-6147(00)89080-x. [DOI] [PubMed] [Google Scholar]
- States D. J., Walseth T. F., Lee H. C. Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem Sci. 1992 Dec;17(12):495–495. doi: 10.1016/0968-0004(92)90337-9. [DOI] [PubMed] [Google Scholar]
- Summerhill R. J., Jackson D. G., Galione A. Human lymphocyte antigen CD38 catalyzes the production of cyclic ADP-ribose. FEBS Lett. 1993 Dec 6;335(2):231–233. doi: 10.1016/0014-5793(93)80735-d. [DOI] [PubMed] [Google Scholar]
- Takasawa S., Tohgo A., Noguchi N., Koguma T., Nata K., Sugimoto T., Yonekura H., Okamoto H. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J Biol Chem. 1993 Dec 15;268(35):26052–26054. [PubMed] [Google Scholar]
- ZATMAN L. J., KAPLAN N. O., COLOWICK S. P., CIOTTI M. M. Effect of isonicotinic acid hydrazide on diphosphopyridine nucleotidases. J Biol Chem. 1954 Aug;209(2):453–466. [PubMed] [Google Scholar]
- Zocchi E., Franco L., Guida L., Benatti U., Bargellesi A., Malavasi F., Lee H. C., De Flora A. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1459–1465. doi: 10.1006/bbrc.1993.2416. [DOI] [PubMed] [Google Scholar]
- Zocchi E., Franco L., Guida L., Piccini D., Tacchetti C., De Flora A. NAD+-dependent internalization of the transmembrane glycoprotein CD38 in human Namalwa B cells. FEBS Lett. 1996 Nov 4;396(2-3):327–332. doi: 10.1016/0014-5793(96)01125-8. [DOI] [PubMed] [Google Scholar]