Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Mar 15;330(Pt 3):1399–1404. doi: 10.1042/bj3301399

A phogrin-aequorin chimaera to image free Ca2+ in the vicinity of secretory granules.

A E Pouli 1, N Karagenc 1, C Wasmeier 1, J C Hutton 1, N Bright 1, S Arden 1, J G Schofield 1, G A Rutter 1
PMCID: PMC1219288  PMID: 9494112

Abstract

Microdomains of high Ca2+ concentration ([Ca2+]) may be critical to the control of intracellular processes such as secretion and metabolism without compromising other cell functions. To explore changes in [Ca2+] in the outer mantle (< 30 nm deep) that surrounds the surface of dense-core secretory granules, we have designed a recombinant chimaera between the granule protein phogrin and aequorin. When expressed in populations of insulin-secreting MIN6 or phaeochromocytoma PC12 cells, the chimaera was targeted to secretory granules as expected. The recombinant protein reported a similar [Ca2+] at the granule surface to that in the bulk cytosol, measured with untargeted aequorin. This was the case both at rest (-Ca2+- = 80-120 nM) and after stimulation with agents that provoke Ca2+ entry or Ca2+ mobilization from intracellular pools, and during activated secretion. Thus depolarization of MIN6 cell populations with high K+ increased [Ca2+] both in the bulk cytosol and close to the granules to approx. 4 microM, with near-identical kinetics of increase and recovery. Similarly, stimulation of PC12 cells with ATP provoked an increase in -Ca2+- in either domain to 1.3 microM. These data argue that, in MIN6 and PC12 neuroendocrine cells (i) significant mobilization of Ca2+ from most secretory granules probably does not occur during activated Ca2+ influx or mobilization of internal Ca2+ stores, and (ii) agonist-stimulated Ca2+-dependent secretion can occur without development of a large gradient of [Ca2+] between the surface of most secretory vesicles and the rest of the cytosol.

Full Text

The Full Text of this article is available as a PDF (404.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamsson H., Gylfe E., Hellman B. Influence of external calcium ions on labelled calcium efflux from pancreatic beta-cells and insulin granules in mice. J Physiol. 1981 Feb;311:541–550. doi: 10.1113/jphysiol.1981.sp013603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barry V. A., Cheek T. R. Extracellular ATP triggers two functionally distinct calcium signalling pathways in PC12 cells. J Cell Sci. 1994 Feb;107(Pt 2):451–462. doi: 10.1242/jcs.107.2.451. [DOI] [PubMed] [Google Scholar]
  3. Blondel O., Moody M. M., Depaoli A. M., Sharp A. H., Ross C. A., Swift H., Bell G. I. Localization of inositol trisphosphate receptor subtype 3 to insulin and somatostatin secretory granules and regulation of expression in islets and insulinoma cells. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7777–7781. doi: 10.1073/pnas.91.16.7777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brini M., Marsault R., Bastianutto C., Alvarez J., Pozzan T., Rizzuto R. Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+]c). A critical evaluation. J Biol Chem. 1995 Apr 28;270(17):9896–9903. doi: 10.1074/jbc.270.17.9896. [DOI] [PubMed] [Google Scholar]
  5. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  6. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  7. Gerasimenko O. V., Gerasimenko J. V., Belan P. V., Petersen O. H. Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell. 1996 Feb 9;84(3):473–480. doi: 10.1016/s0092-8674(00)81292-1. [DOI] [PubMed] [Google Scholar]
  8. Horne J. H., Meyer T. Elementary calcium-release units induced by inositol trisphosphate. Science. 1997 Jun 13;276(5319):1690–1693. doi: 10.1126/science.276.5319.1690. [DOI] [PubMed] [Google Scholar]
  9. Hutton J. C., Penn E. J., Peshavaria M. Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J. 1983 Feb 15;210(2):297–305. doi: 10.1042/bj2100297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Inouye S., Noguchi M., Sakaki Y., Takagi Y., Miyata T., Iwanaga S., Miyata T., Tsuji F. I. Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc Natl Acad Sci U S A. 1985 May;82(10):3154–3158. doi: 10.1073/pnas.82.10.3154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marsault R., Murgia M., Pozzan T., Rizzuto R. Domains of high Ca2+ beneath the plasma membrane of living A7r5 cells. EMBO J. 1997 Apr 1;16(7):1575–1581. doi: 10.1093/emboj/16.7.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meldolesi J., Pozzan T. IP3 receptors and secretory granules. Trends Neurosci. 1995 Aug;18(8):340–341. doi: 10.1016/0166-2236(95)93924-m. [DOI] [PubMed] [Google Scholar]
  13. Miyazaki J., Araki K., Yamato E., Ikegami H., Asano T., Shibasaki Y., Oka Y., Yamamura K. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology. 1990 Jul;127(1):126–132. doi: 10.1210/endo-127-1-126. [DOI] [PubMed] [Google Scholar]
  14. Nikodijevic B., Sei Y., Shin Y., Daly J. W. Effects of ATP and UTP in pheochromocytoma PC12 cells: evidence for the presence of three P2 receptors, only one of which subserves stimulation of norepinephrine release. Cell Mol Neurobiol. 1994 Feb;14(1):27–47. doi: 10.1007/BF02088587. [DOI] [PubMed] [Google Scholar]
  15. Ponnambalam S., Rabouille C., Luzio J. P., Nilsson T., Warren G. The TGN38 glycoprotein contains two non-overlapping signals that mediate localization to the trans-Golgi network. J Cell Biol. 1994 Apr;125(2):253–268. doi: 10.1083/jcb.125.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pozzan T., Gatti G., Dozio N., Vicentini L. M., Meldolesi J. Ca2+-dependent and -independent release of neurotransmitters from PC12 cells: a role for protein kinase C activation? J Cell Biol. 1984 Aug;99(2):628–638. doi: 10.1083/jcb.99.2.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Prentki M., Janjic D., Wollheim C. B. Coordinated regulation of free Ca2+ by isolated organelles from a rat insulinoma. J Biol Chem. 1984 Nov 25;259(22):14054–14058. [PubMed] [Google Scholar]
  18. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  19. Rizzuto R., Brini M., Bastianutto C., Marsault R., Pozzan T. Photoprotein-mediated measurement of calcium ion concentration in mitochondria of living cells. Methods Enzymol. 1995;260:417–428. doi: 10.1016/0076-6879(95)60155-4. [DOI] [PubMed] [Google Scholar]
  20. Rothman J. E. Mechanisms of intracellular protein transport. Nature. 1994 Nov 3;372(6501):55–63. doi: 10.1038/372055a0. [DOI] [PubMed] [Google Scholar]
  21. Rutter G. A., Burnett P., Rizzuto R., Brini M., Murgia M., Pozzan T., Tavaré J. M., Denton R. M. Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5489–5494. doi: 10.1073/pnas.93.11.5489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rutter G. A., Theler J. M., Murgia M., Wollheim C. B., Pozzan T., Rizzuto R. Stimulated Ca2+ influx raises mitochondrial free Ca2+ to supramicromolar levels in a pancreatic beta-cell line. Possible role in glucose and agonist-induced insulin secretion. J Biol Chem. 1993 Oct 25;268(30):22385–22390. [PubMed] [Google Scholar]
  23. Smith C. B., Betz W. J. Simultaneous independent measurement of endocytosis and exocytosis. Nature. 1996 Apr 11;380(6574):531–534. doi: 10.1038/380531a0. [DOI] [PubMed] [Google Scholar]
  24. Steyer J. A., Horstmann H., Almers W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature. 1997 Jul 31;388(6641):474–478. doi: 10.1038/41329. [DOI] [PubMed] [Google Scholar]
  25. Su X. D., Taddei N., Stefani M., Ramponi G., Nordlund P. The crystal structure of a low-molecular-weight phosphotyrosine protein phosphatase. Nature. 1994 Aug 18;370(6490):575–578. doi: 10.1038/370575a0. [DOI] [PubMed] [Google Scholar]
  26. Theler J. M., Mollard P., Guérineau N., Vacher P., Pralong W. F., Schlegel W., Wollheim C. B. Video imaging of cytosolic Ca2+ in pancreatic beta-cells stimulated by glucose, carbachol, and ATP. J Biol Chem. 1992 Sep 5;267(25):18110–18117. [PubMed] [Google Scholar]
  27. Tse F. W., Tse A., Hille B., Horstmann H., Almers W. Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs. Neuron. 1997 Jan;18(1):121–132. doi: 10.1016/s0896-6273(01)80051-9. [DOI] [PubMed] [Google Scholar]
  28. Wasmeier C., Hutton J. C. Molecular cloning of phogrin, a protein-tyrosine phosphatase homologue localized to insulin secretory granule membranes. J Biol Chem. 1996 Jul 26;271(30):18161–18170. doi: 10.1074/jbc.271.30.18161. [DOI] [PubMed] [Google Scholar]
  29. Wollheim C. B., Sharp G. W. Regulation of insulin release by calcium. Physiol Rev. 1981 Oct;61(4):914–973. doi: 10.1152/physrev.1981.61.4.914. [DOI] [PubMed] [Google Scholar]
  30. Yule D. I., Ernst S. A., Ohnishi H., Wojcikiewicz R. J. Evidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5-trisphosphate receptors in pancreatic acinar cells. J Biol Chem. 1997 Apr 4;272(14):9093–9098. doi: 10.1074/jbc.272.14.9093. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES