Abstract
The structure and phosphorylation of two protein kinase C (PKC) alpha substrate peptides were investigated in varying lipid systems using enzyme activity assays and circular dichroism (CD) spectroscopy. The alpha-peptide, which exhibits the typical PKC alpha substrate motif and is based on the pseudosubstrate region of PKCalpha, was phosphorylated to a similar extent in bovine brain phosphatidylserine vesicles or diheptanoylphosphatidylcholine (PC7) micelles (both with 5 mol % 1,2-dioleoyl-sn-glycerol), whereas neuromodulin (NM)-peptide, which does not exhibit this motif by virtue of its primary structure, was phosphorylated to a much lesser extent in the PC7 micellar system. CD spectra of the peptides indicated that NM-peptide underwent a dramatic structural change in the presence of dimyristoylphosphatidylserine (DMPS) vesicles, whereas spectra acquired in PC7 micelles were similar to those acquired in buffer alone. No significant structural change was observed in the alpha-peptide in the presence of either lipid. PKC activity assays conducted with a series of NM-peptides successively substituted with nitroxide spin labels at each residue position suggested that several residues distal to the phosphorylation site are necessary for substrate recognition. The effect of these substitutions is not consistent with the binding of the NM-peptide to PKC in an extended structure, but is consistent with the binding of this peptide in a helical conformation. Furthermore, the docking of a helical NM-peptide to the substrate binding site of PKC suggests that the interaction is energetically feasible. These results suggest that PKC may recognize some non-linear substrate motifs and that lipid binding may convert a protein into a better PKC substrate.
Full Text
The Full Text of this article is available as a PDF (521.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander K. A., Cimler B. M., Meier K. E., Storm D. R. Regulation of calmodulin binding to P-57. A neurospecific calmodulin binding protein. J Biol Chem. 1987 May 5;262(13):6108–6113. [PubMed] [Google Scholar]
- Apel E. D., Byford M. F., Au D., Walsh K. A., Storm D. R. Identification of the protein kinase C phosphorylation site in neuromodulin. Biochemistry. 1990 Mar 6;29(9):2330–2335. doi: 10.1021/bi00461a017. [DOI] [PubMed] [Google Scholar]
- Archer S. J., Ellena J. F., Cafiso D. S. Dynamics and aggregation of the peptide ion channel alamethicin. Measurements using spin-labeled peptides. Biophys J. 1991 Aug;60(2):389–398. doi: 10.1016/S0006-3495(91)82064-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bazzi M. D., Nelsestuen G. L. Role of substrate in imparting calcium and phospholipid requirements to protein kinase C activation. Biochemistry. 1987 Apr 7;26(7):1974–1982. doi: 10.1021/bi00381a029. [DOI] [PubMed] [Google Scholar]
- Bruins R. H., Epand R. M. Membrane components can modulate the substrate specificity of protein kinase C. Mol Cell Biochem. 1995 Jan 26;142(2):125–130. doi: 10.1007/BF00928933. [DOI] [PubMed] [Google Scholar]
- Cafiso D. S., Hubbell W. L. EPR determination of membrane potentials. Annu Rev Biophys Bioeng. 1981;10:217–244. doi: 10.1146/annurev.bb.10.060181.001245. [DOI] [PubMed] [Google Scholar]
- Chang C. T., Wu C. S., Yang J. T. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978 Nov;91(1):13–31. doi: 10.1016/0003-2697(78)90812-6. [DOI] [PubMed] [Google Scholar]
- Dekker L. V., McIntyre P., Parker P. J. Mutagenesis of the regulatory domain of rat protein kinase C-eta. A molecular basis for restricted histone kinase activity. J Biol Chem. 1993 Sep 15;268(26):19498–19504. [PubMed] [Google Scholar]
- Hammen P. K., Gorenstein D. G., Weiner H. Amphiphilicity determines binding properties of three mitochondrial presequences to lipid surfaces. Biochemistry. 1996 Mar 26;35(12):3772–3781. doi: 10.1021/bi951848g. [DOI] [PubMed] [Google Scholar]
- Houbre D., Duportail G., Deloulme J. C., Baudier J. The interactions of the brain-specific calmodulin-binding protein kinase C substrate, neuromodulin (GAP 43), with membrane phospholipids. J Biol Chem. 1991 Apr 15;266(11):7121–7131. [PubMed] [Google Scholar]
- House C., Kemp B. E. Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science. 1987 Dec 18;238(4834):1726–1728. doi: 10.1126/science.3686012. [DOI] [PubMed] [Google Scholar]
- House C., Wettenhall R. E., Kemp B. E. The influence of basic residues on the substrate specificity of protein kinase C. J Biol Chem. 1987 Jan 15;262(2):772–777. [PubMed] [Google Scholar]
- Inoue M., Kishimoto A., Takai Y., Nishizuka Y. Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II. Proenzyme and its activation by calcium-dependent protease from rat brain. J Biol Chem. 1977 Nov 10;252(21):7610–7616. [PubMed] [Google Scholar]
- Kemp B. E., Pearson R. B. Intrasteric regulation of protein kinases and phosphatases. Biochim Biophys Acta. 1991 Aug 13;1094(1):67–76. doi: 10.1016/0167-4889(91)90027-u. [DOI] [PubMed] [Google Scholar]
- Maurer M. C., Grisham C. M., Sando J. J. Activation and inhibition of protein kinase C isozymes alpha and beta by Gd3+. Arch Biochem Biophys. 1992 Nov 1;298(2):561–568. doi: 10.1016/0003-9861(92)90450-b. [DOI] [PubMed] [Google Scholar]
- Mosior M., McLaughlin S. Peptides that mimic the pseudosubstrate region of protein kinase C bind to acidic lipids in membranes. Biophys J. 1991 Jul;60(1):149–159. doi: 10.1016/S0006-3495(91)82038-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakabayashi H., Sellers J. R., Huang K. P. Catalytic fragment of protein kinase C exhibits altered substrate specificity toward smooth muscle myosin light chain. FEBS Lett. 1991 Dec 2;294(1-2):144–148. doi: 10.1016/0014-5793(91)81362-c. [DOI] [PubMed] [Google Scholar]
- Nakadate T., Jeng A. Y., Blumberg P. M. Effect of phospholipid on substrate phosphorylation by a catalytic fragment of protein kinase C. J Biol Chem. 1987 Aug 25;262(24):11507–11513. [PubMed] [Google Scholar]
- Orr J. W., Newton A. C. Intrapeptide regulation of protein kinase C. J Biol Chem. 1994 Mar 18;269(11):8383–8387. [PubMed] [Google Scholar]
- Pears C., Schaap D., Parker P. J. The regulatory domain of protein kinase C-epsilon restricts the catalytic-domain-specificity. Biochem J. 1991 May 15;276(Pt 1):257–260. doi: 10.1042/bj2760257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qin Z., Cafiso D. S. Membrane structure of protein kinase C and calmodulin binding domain of myristoylated alanine rich C kinase substrate determined by site-directed spin labeling. Biochemistry. 1996 Mar 5;35(9):2917–2925. doi: 10.1021/bi9521452. [DOI] [PubMed] [Google Scholar]
- Qin Z., Wertz S. L., Jacob J., Savino Y., Cafiso D. S. Defining protein-protein interactions using site-directed spin-labeling: the binding of protein kinase C substrates to calmodulin. Biochemistry. 1996 Oct 15;35(41):13272–13276. doi: 10.1021/bi961747y. [DOI] [PubMed] [Google Scholar]
- Sando J. J., Chertihin O. I. Activation of protein kinase C by lysophosphatidic acid: dependence on composition of phospholipid vesicles. Biochem J. 1996 Jul 15;317(Pt 2):583–588. doi: 10.1042/bj3170583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sando J. J., Young M. C. Identification of high-affinity phorbol ester receptor in cytosol of EL4 thymoma cells: requirement for calcium, magnesium, and phospholipids. Proc Natl Acad Sci U S A. 1983 May;80(9):2642–2646. doi: 10.1073/pnas.80.9.2642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seki K., Sheu F. S., Huang K. P. Binding of myristoylated alanine-rich protein kinase C substrate to phosphoinositides attenuates the phosphorylation by protein kinase C. Arch Biochem Biophys. 1996 Feb 15;326(2):193–201. doi: 10.1006/abbi.1996.0065. [DOI] [PubMed] [Google Scholar]
- Srinivasan N., Bax B., Blundell T. L., Parker P. J. Structural aspects of the functional modules in human protein kinase-C alpha deduced from comparative analyses. Proteins. 1996 Oct;26(2):217–235. doi: 10.1002/(SICI)1097-0134(199610)26:2<217::AID-PROT11>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Stabel S., Parker P. J. Protein kinase C. Pharmacol Ther. 1991;51(1):71–95. doi: 10.1016/0163-7258(91)90042-k. [DOI] [PubMed] [Google Scholar]
- Walker J. M., Sando J. J. Activation of protein kinase C by short chain phosphatidylcholines. J Biol Chem. 1988 Apr 5;263(10):4537–4540. [PubMed] [Google Scholar]
- Wertz S. L., Savino Y., Cafiso D. S. Solution and membrane bound structure of a peptide derived from the protein kinase C substrate domain of neuromodulin. Biochemistry. 1996 Aug 27;35(34):11104–11112. doi: 10.1021/bi961248x. [DOI] [PubMed] [Google Scholar]
- Willis K. J. Interaction with model membrane systems induces secondary structure in amino-terminal fragments of parathyroid hormone related protein. Int J Pept Protein Res. 1994 Jan;43(1):23–28. doi: 10.1111/j.1399-3011.1994.tb00371.x. [DOI] [PubMed] [Google Scholar]
- Woodgett J. R., Gould K. L., Hunter T. Substrate specificity of protein kinase C. Use of synthetic peptides corresponding to physiological sites as probes for substrate recognition requirements. Eur J Biochem. 1986 Nov 17;161(1):177–184. doi: 10.1111/j.1432-1033.1986.tb10139.x. [DOI] [PubMed] [Google Scholar]
- Yu Y. G., Thorgeirsson T. E., Shin Y. K. Topology of an amphiphilic mitochondrial signal sequence in the membrane-inserted state: a spin labeling study. Biochemistry. 1994 Nov 29;33(47):14221–14226. doi: 10.1021/bi00251a034. [DOI] [PubMed] [Google Scholar]
- Zhang M., Vogel H. J., Zwiers H. Nuclear magnetic resonance studies of the structure of B50/neuromodulin and its interaction with calmodulin. Biochem Cell Biol. 1994 Mar-Apr;72(3-4):109–116. doi: 10.1139/o94-017. [DOI] [PubMed] [Google Scholar]
