Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Apr 1;331(Pt 1):61–68. doi: 10.1042/bj3310061

Characterization of human involucrin promoter distal regulatory region transcriptional activator elements-a role for Sp1 and AP1 binding sites.

E B Banks 1, J F Crish 1, J F Welter 1, R L Eckert 1
PMCID: PMC1219321  PMID: 9512462

Abstract

Human involucrin (hINV) is an important precursor of the keratinocyte cornified envelope that is specifically expressed in the suprabasal layers of stratifying epithelia. Previous truncation and mutagenesis experiments have shown that an activator protein 1 (Ap1) site, AP1-5, located 2100bp upstream of the transcription start site, is required for optimal promoter activity. These previous studies suggest that AP1-5 is part of a distal regulatory region spanning nucleotides -2473 to -2088. In the present report, we study the distal regulatory region (DRR), which surrounds AP1-5. Our studies show that this region contains weak and strong activator elements spanning nucleotides -2473/-2216 and -2140/-2088, respectively. The strong activator element contains AP1-5 and an adjacent specificity protein 1 (Sp1) site. The AP1-5 site is absolutely required for DRR activity, as its mutation reduces transcription to basal levels. Mutagenesis studies of the AP1-5 and Sp1 sites in the presence or absence of the weak activator element indicate that the Sp1 site and the weak activator element synergistically activate the AP1-5 site-dependent transcription. The cooperation between the Sp1 and AP1-5 sites is also observed in the context of the full-length promoter. Gel mobility shift and supershift studies show that Sp1, but not Sp2, Sp3 or Sp4 binds to the Sp1 site. When the Sp1 site is mutated or the distance between the AP1-5 and Sp1 site is increased, the binding of AP1 factors to AP1-5 is markedly reduced. Surprisingly, gel shift studies suggest that activation does not require the formation of a stable AP1/Sp1/DNA ternary complex. These studies suggest that the AP1-5 site is absolutely required for transcriptional activation, that the weak activator element and Sp1 sites serve to enhance this activation, and that the Sp1 site is required for optimal AP1 factor binding at the AP1-5 site.

Full Text

The Full Text of this article is available as a PDF (434.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apt D., Watts R. M., Suske G., Bernard H. U. High Sp1/Sp3 ratios in epithelial cells during epithelial differentiation and cellular transformation correlate with the activation of the HPV-16 promoter. Virology. 1996 Oct 1;224(1):281–291. doi: 10.1006/viro.1996.0530. [DOI] [PubMed] [Google Scholar]
  2. Begeot M., Shetty U., Kilgore M., Waterman M., Simpson E. Regulation of expression of the CYP11A (P450scc) gene in bovine ovarian luteal cells by forskolin and phorbol esters. J Biol Chem. 1993 Aug 15;268(23):17317–17325. [PubMed] [Google Scholar]
  3. Bessereau J. L., Mendelzon D., LePoupon C., Fiszman M., Changeux J. P., Piette J. Muscle-specific expression of the acetylcholine receptor alpha-subunit gene requires both positive and negative interactions between myogenic factors, Sp1 and GBF factors. EMBO J. 1993 Feb;12(2):443–449. doi: 10.1002/j.1460-2075.1993.tb05676.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carroll J. M., Albers K. M., Garlick J. A., Harrington R., Taichman L. B. Tissue- and stratum-specific expression of the human involucrin promoter in transgenic mice. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10270–10274. doi: 10.1073/pnas.90.21.10270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carroll J. M., Taichman L. B. Characterization of the human involucrin promoter using a transient beta-galactosidase assay. J Cell Sci. 1992 Dec;103(Pt 4):925–930. doi: 10.1242/jcs.103.4.925. [DOI] [PubMed] [Google Scholar]
  6. Chakravarty R., Rong X. H., Rice R. H. Phorbol ester-stimulated phosphorylation of keratinocyte transglutaminase in the membrane anchorage region. Biochem J. 1990 Oct 1;271(1):25–30. doi: 10.1042/bj2710025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Courey A. J., Holtzman D. A., Jackson S. P., Tjian R. Synergistic activation by the glutamine-rich domains of human transcription factor Sp1. Cell. 1989 Dec 1;59(5):827–836. doi: 10.1016/0092-8674(89)90606-5. [DOI] [PubMed] [Google Scholar]
  8. Crish J. F., Howard J. M., Zaim T. M., Murthy S., Eckert R. L. Tissue-specific and differentiation-appropriate expression of the human involucrin gene in transgenic mice: an abnormal epidermal phenotype. Differentiation. 1993 Jul;53(3):191–200. doi: 10.1111/j.1432-0436.1993.tb00708.x. [DOI] [PubMed] [Google Scholar]
  9. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dignam J. D., Martin P. L., Shastry B. S., Roeder R. G. Eukaryotic gene transcription with purified components. Methods Enzymol. 1983;101:582–598. doi: 10.1016/0076-6879(83)01039-3. [DOI] [PubMed] [Google Scholar]
  11. Eckert R. L., Green H. Structure and evolution of the human involucrin gene. Cell. 1986 Aug 15;46(4):583–589. doi: 10.1016/0092-8674(86)90884-6. [DOI] [PubMed] [Google Scholar]
  12. Eckert R. L. Structure, function, and differentiation of the keratinocyte. Physiol Rev. 1989 Oct;69(4):1316–1346. doi: 10.1152/physrev.1989.69.4.1316. [DOI] [PubMed] [Google Scholar]
  13. Eckert R. L., Yaffe M. B., Crish J. F., Murthy S., Rorke E. A., Welter J. F. Involucrin--structure and role in envelope assembly. J Invest Dermatol. 1993 May;100(5):613–617. doi: 10.1111/1523-1747.ep12472288. [DOI] [PubMed] [Google Scholar]
  14. Gibbs S., Fijneman R., Wiegant J., van Kessel A. G., van De Putte P., Backendorf C. Molecular characterization and evolution of the SPRR family of keratinocyte differentiation markers encoding small proline-rich proteins. Genomics. 1993 Jun;16(3):630–637. doi: 10.1006/geno.1993.1240. [DOI] [PubMed] [Google Scholar]
  15. Greco M. A., Lorand L., Lane W. S., Baden H. P., Parameswaran K. N., Kvedar J. C. The pancornulins: a group of small proline rich-related cornified envelope precursors with bifunctional capabilities in isopeptide bond formation. J Invest Dermatol. 1995 Feb;104(2):204–210. doi: 10.1111/1523-1747.ep12612759. [DOI] [PubMed] [Google Scholar]
  16. Gégonne A., Bosselut R., Bailly R. A., Ghysdael J. Synergistic activation of the HTLV1 LTR Ets-responsive region by transcription factors Ets1 and Sp1. EMBO J. 1993 Mar;12(3):1169–1178. doi: 10.1002/j.1460-2075.1993.tb05758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ikeda K., Nagano K., Kawakami K. Possible implications of Sp1-induced bending of DNA on synergistic activation of transcription. Gene. 1993 Dec 22;136(1-2):341–343. doi: 10.1016/0378-1119(93)90492-l. [DOI] [PubMed] [Google Scholar]
  18. Khachigian L. M., Williams A. J., Collins T. Interplay of Sp1 and Egr-1 in the proximal platelet-derived growth factor A-chain promoter in cultured vascular endothelial cells. J Biol Chem. 1995 Nov 17;270(46):27679–27686. doi: 10.1074/jbc.270.46.27679. [DOI] [PubMed] [Google Scholar]
  19. Kim S. Y., Chung S. I., Steinert P. M. Highly active soluble processed forms of the transglutaminase 1 enzyme in epidermal keratinocytes. J Biol Chem. 1995 Jul 28;270(30):18026–18035. doi: 10.1074/jbc.270.30.18026. [DOI] [PubMed] [Google Scholar]
  20. Lee Y. H., Yano M., Liu S. Y., Matsunaga E., Johnson P. F., Gonzalez F. J. A novel cis-acting element controlling the rat CYP2D5 gene and requiring cooperativity between C/EBP beta and an Sp1 factor. Mol Cell Biol. 1994 Feb;14(2):1383–1394. doi: 10.1128/mcb.14.2.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Look D. C., Pelletier M. R., Tidwell R. M., Roswit W. T., Holtzman M. J. Stat1 depends on transcriptional synergy with Sp1. J Biol Chem. 1995 Dec 22;270(51):30264–30267. doi: 10.1074/jbc.270.51.30264. [DOI] [PubMed] [Google Scholar]
  22. Murthy S., Crish J. F., Zaim T. M., Eckert R. L. A dual role for involucrin in the epidermis-ultrastructural localization in epidermis and hair follicle in humans and transgenic mice. J Struct Biol. 1993 Jul-Aug;111(1):68–76. doi: 10.1006/jsbi.1993.1037. [DOI] [PubMed] [Google Scholar]
  23. Noti J. D., Reinemann B. C., Petrus M. N. Sp1 binds two sites in the CD11c promoter in vivo specifically in myeloid cells and cooperates with AP1 to activate transcription. Mol Cell Biol. 1996 Jun;16(6):2940–2950. doi: 10.1128/mcb.16.6.2940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Perkins N. D., Edwards N. L., Duckett C. S., Agranoff A. B., Schmid R. M., Nabel G. J. A cooperative interaction between NF-kappa B and Sp1 is required for HIV-1 enhancer activation. EMBO J. 1993 Sep;12(9):3551–3558. doi: 10.1002/j.1460-2075.1993.tb06029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Phillips M. A., Stewart B. E., Qin Q., Chakravarty R., Floyd E. E., Jetten A. M., Rice R. H. Primary structure of keratinocyte transglutaminase. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9333–9337. doi: 10.1073/pnas.87.23.9333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Prowse D. M., Bolgan L., Molnár A., Dotto G. P. Involvement of the Sp3 transcription factor in induction of p21Cip1/WAF1 in keratinocyte differentiation. J Biol Chem. 1997 Jan 10;272(2):1308–1314. doi: 10.1074/jbc.272.2.1308. [DOI] [PubMed] [Google Scholar]
  27. Rice R. H., Green H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell. 1979 Nov;18(3):681–694. doi: 10.1016/0092-8674(79)90123-5. [DOI] [PubMed] [Google Scholar]
  28. Rice R. H., Rong X. H., Chakravarty R. Proteolytic release of keratinocyte transglutaminase. Biochem J. 1990 Jan 15;265(2):351–357. doi: 10.1042/bj2650351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rice R. H., Steinmann K. E., deGraffenried L. A., Qin Q., Taylor N., Schlegel R. Elevation of cell cycle control proteins during spontaneous immortalization of human keratinocytes. Mol Biol Cell. 1993 Feb;4(2):185–194. doi: 10.1091/mbc.4.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Seto E., Lewis B., Shenk T. Interaction between transcription factors Sp1 and YY1. Nature. 1993 Sep 30;365(6445):462–464. doi: 10.1038/365462a0. [DOI] [PubMed] [Google Scholar]
  31. Steven A. C., Steinert P. M. Protein composition of cornified cell envelopes of epidermal keratinocytes. J Cell Sci. 1994 Feb;107(Pt 2):693–700. [PubMed] [Google Scholar]
  32. Su W., Jackson S., Tjian R., Echols H. DNA looping between sites for transcriptional activation: self-association of DNA-bound Sp1. Genes Dev. 1991 May;5(5):820–826. doi: 10.1101/gad.5.5.820. [DOI] [PubMed] [Google Scholar]
  33. Takahashi M., Tezuka T., Kakegawa H., Katunuma N. Linkage between phosphorylated cystatin alpha and filaggrin by epidermal transglutaminase as a model of cornified envelope and inhibition of cathepsin L activity by cornified envelope and the conjugated cystatin alpha. FEBS Lett. 1994 Mar 7;340(3):173–176. doi: 10.1016/0014-5793(94)80131-2. [DOI] [PubMed] [Google Scholar]
  34. Takahashi M., Tezuka T., Katunuma N. Phosphorylated cystatin alpha is a natural substrate of epidermal transglutaminase for formation of skin cornified envelope. FEBS Lett. 1992 Aug 10;308(1):79–82. doi: 10.1016/0014-5793(92)81055-q. [DOI] [PubMed] [Google Scholar]
  35. Welter J. F., Crish J. F., Agarwal C., Eckert R. L. Fos-related antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. J Biol Chem. 1995 May 26;270(21):12614–12622. doi: 10.1074/jbc.270.21.12614. [DOI] [PubMed] [Google Scholar]
  36. Welter J. F., Gali H., Crish J. F., Eckert R. L. Regulation of human involucrin promoter activity by POU domain proteins. J Biol Chem. 1996 Jun 21;271(25):14727–14733. doi: 10.1074/jbc.271.25.14727. [DOI] [PubMed] [Google Scholar]
  37. Yaffe M. B., Beegen H., Eckert R. L. Biophysical characterization of involucrin reveals a molecule ideally suited to function as an intermolecular cross-bridge of the keratinocyte cornified envelope. J Biol Chem. 1992 Jun 15;267(17):12233–12238. [PubMed] [Google Scholar]
  38. Yaffe M. B., Murthy S., Eckert R. L. Evidence that involucrin is a covalently linked constituent of highly purified cultured keratinocyte cornified envelopes. J Invest Dermatol. 1993 Jan;100(1):3–9. doi: 10.1111/1523-1747.ep12349857. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES