Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Apr 1;331(Pt 1):105–112. doi: 10.1042/bj3310105

Induction of tissue transglutaminase by dexamethasone: its correlation to receptor number and transglutaminase-mediated cell death in a series of malignant hamster fibrosarcomas.

T S Johnson 1, C I Scholfield 1, J Parry 1, M Griffin 1
PMCID: PMC1219326  PMID: 9512467

Abstract

Treatment of the hamster fibrosarcoma cell lines (Met B, D and E) and BHK-21 hamster fibroblast cells with the glucocorticoid dexamethasone led to a powerful dose-dependent mRNA-synthesis-dependent increase in transglutaminase activity, which can be correlated with dexamethasone-responsive receptor numbers in each cell line. Increasing the number of dexamethasone-responsive receptors by transfection of cells with the HG1 glucocorticoid receptor protein caused an increase in transglutaminase activity that was proportional to the level of transfected receptor. In all experiments the levels of the tissue transglutaminase-mediated detergent-insoluble bodies was found to be comparable with increases in transglutaminase activity. Despite an increase in detergent-insoluble body formation, an increase in apoptosis as measured by DNA fragmentation was not found. Incubation of cells with the non-toxic competitive transglutaminase substrate fluorescein cadaverine led to the incorporation of this fluorescent amine into cellular proteins when cells were damaged after exposure to trypsin during cell passage. These cross-linked proteins containing fluorescein cadaverine were shown to be present in the detergent-insoluble bodies, indicating that the origin of these bodies is via activation of tissue transglutaminase after cell damage by trypsinization rather than apoptosis per se, since Met B cells expressing the bcl-2 cDNA were not protected from detergent-insoluble body formation. We describe a novel mechanism of cell death related to tissue transglutaminase expression and cell damage.

Full Text

The Full Text of this article is available as a PDF (248.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achyuthan K. E., Greenberg C. S. Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity. J Biol Chem. 1987 Feb 5;262(4):1901–1906. [PubMed] [Google Scholar]
  2. Aeschlimann D., Paulsson M. Cross-linking of laminin-nidogen complexes by tissue transglutaminase. A novel mechanism for basement membrane stabilization. J Biol Chem. 1991 Aug 15;266(23):15308–15317. [PubMed] [Google Scholar]
  3. Barnes R. N., Bungay P. J., Elliott B. M., Walton P. L., Griffin M. Alterations in the distribution and activity of transglutaminase during tumour growth and metastasis. Carcinogenesis. 1985 Mar;6(3):459–463. doi: 10.1093/carcin/6.3.459. [DOI] [PubMed] [Google Scholar]
  4. Barsigian C., Fellin F. M., Jain A., Martinez J. Dissociation of fibrinogen and fibronectin binding from transglutaminase-mediated cross-linking at the hepatocyte surface. J Biol Chem. 1988 Oct 5;263(28):14015–14022. [PubMed] [Google Scholar]
  5. Bhandari B., Beckwith K. D., Miller R. E. Cloning, nucleotide sequence, and potential regulatory elements of the glutamine synthetase gene from murine 3T3-L1 adipocytes. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5789–5793. doi: 10.1073/pnas.85.16.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Birckbichler P. J., Orr G. R., Patterson M. K., Jr, Conway E., Carter H. A., Maxwell M. D. Enhanced transglutaminase activity in transformed human lung fibroblast cells after exposure to sodium butyrate. Biochim Biophys Acta. 1983 Aug 17;763(1):27–34. doi: 10.1016/0167-4889(83)90021-6. [DOI] [PubMed] [Google Scholar]
  7. Birckbichler P. J., Orr G. R., Patterson M. K., Jr Differential transglutaminase distribution in normal rat liver and rat hepatoma. Cancer Res. 1976 Aug;36(8):2911–2914. [PubMed] [Google Scholar]
  8. Borge L., Demignot S., Adolphe M. Type II transglutaminase expression in rabbit articular chondrocytes in culture: relation with cell differentiation, cell growth, cell adhesion and cell apoptosis. Biochim Biophys Acta. 1996 Jun 13;1312(2):117–124. doi: 10.1016/0167-4889(96)00028-6. [DOI] [PubMed] [Google Scholar]
  9. Bowness J. M., Tarr A. H. Lipoprotein binding of crosslinked type III collagen aminopropeptide and fractions of its antigen in blood. Biochem Biophys Res Commun. 1990 Jul 31;170(2):519–525. doi: 10.1016/0006-291x(90)92122-g. [DOI] [PubMed] [Google Scholar]
  10. Davies P. J., Murtaugh M. P., Moore W. T., Jr, Johnson G. S., Lucas D. Retinoic acid-induced expression of tissue transglutaminase in human promyelocytic leukemia (HL-60) cells. J Biol Chem. 1985 Apr 25;260(8):5166–5174. [PubMed] [Google Scholar]
  11. Delhase M., Castrillo J. L., de la Hoya M., Rajas F., Hooghe-Peters E. L. AP-1 and Oct-1 transcription factors down-regulate the expression of the human PIT1/GHF1 gene. J Biol Chem. 1996 Dec 13;271(50):32349–32358. doi: 10.1074/jbc.271.50.32349. [DOI] [PubMed] [Google Scholar]
  12. Fesus L., Thomazy V., Falus A. Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett. 1987 Nov 16;224(1):104–108. doi: 10.1016/0014-5793(87)80430-1. [DOI] [PubMed] [Google Scholar]
  13. Folk J. E., Finlayson J. S. The epsilon-(gamma-glutamyl)lysine crosslink and the catalytic role of transglutaminases. Adv Protein Chem. 1977;31:1–133. doi: 10.1016/s0065-3233(08)60217-x. [DOI] [PubMed] [Google Scholar]
  14. Fukuda K., Kojiro M., Chiu J. F. Cross-linked cytokeratin polypeptides in liver and hepatoma cells: possible association with the process of cell degeneration and death. Hepatology. 1993 Jan;17(1):118–124. [PubMed] [Google Scholar]
  15. Gentile V., Thomazy V., Piacentini M., Fesus L., Davies P. J. Expression of tissue transglutaminase in Balb-C 3T3 fibroblasts: effects on cellular morphology and adhesion. J Cell Biol. 1992 Oct;119(2):463–474. doi: 10.1083/jcb.119.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goldman R. Modulation of transglutaminase activity in mononuclear phagocytes and macrophage-like tumor cell lines by differentiation agents. Exp Cell Res. 1987 Jan;168(1):31–43. doi: 10.1016/0014-4827(87)90413-7. [DOI] [PubMed] [Google Scholar]
  17. Goldman R. Synergism and antagonism in the effects of 1 alpha,25-dihydroxyvitamin D3, retinoic acid, dexamethasone, and a tumor-promoting phorbol ester on the functional capability of P388D1 cells: phagocytosis and transglutaminase activity. Cancer Res. 1985 Jul;45(7):3118–3124. [PubMed] [Google Scholar]
  18. Greenberg C. S., Birckbichler P. J., Rice R. H. Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J. 1991 Dec;5(15):3071–3077. doi: 10.1096/fasebj.5.15.1683845. [DOI] [PubMed] [Google Scholar]
  19. Hand D., Bungay P. J., Elliott B. M., Griffin M. Activation of transglutaminase at calcium levels consistent with a role for this enzyme as a calcium receptor protein. Biosci Rep. 1985 Dec;5(12):1079–1086. doi: 10.1007/BF01119629. [DOI] [PubMed] [Google Scholar]
  20. Hohl D., Mehrel T., Lichti U., Turner M. L., Roop D. R., Steinert P. M. Characterization of human loricrin. Structure and function of a new class of epidermal cell envelope proteins. J Biol Chem. 1991 Apr 5;266(10):6626–6636. [PubMed] [Google Scholar]
  21. Hsu K. H., Friedman H. Dexamethasone inhibition of DMSO-induced transglutaminase activity and differentiation of leukemic cells. Proc Soc Exp Biol Med. 1984 Feb;175(2):205–210. doi: 10.3181/00379727-175-41789. [DOI] [PubMed] [Google Scholar]
  22. Ikura K., Takahata K., Sasaki R. Cross-linking of a synthetic partial-length (1-28) peptide of the Alzheimer beta/A4 amyloid protein by transglutaminase. FEBS Lett. 1993 Jul 12;326(1-3):109–111. doi: 10.1016/0014-5793(93)81772-r. [DOI] [PubMed] [Google Scholar]
  23. Jetten A. M., Shirley J. E. Action of retinoic acid on the diacylglycerol-induced ornithine decarboxylase activity, reduction in EGF binding and protein kinase C activation in rat tracheal epithelial 2C5 cells. Exp Cell Res. 1986 Oct;166(2):519–525. doi: 10.1016/0014-4827(86)90496-9. [DOI] [PubMed] [Google Scholar]
  24. Johnson T. S., Griffin M., Thomas G. L., Skill J., Cox A., Yang B., Nicholas B., Birckbichler P. J., Muchaneta-Kubara C., Meguid El Nahas A. The role of transglutaminase in the rat subtotal nephrectomy model of renal fibrosis. J Clin Invest. 1997 Jun 15;99(12):2950–2960. doi: 10.1172/JCI119490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Johnson T. S., Knight C. R., el-Alaoui S., Mian S., Rees R. C., Gentile V., Davies P. J., Griffin M. Transfection of tissue transglutaminase into a highly malignant hamster fibrosarcoma leads to a reduced incidence of primary tumour growth. Oncogene. 1994 Oct;9(10):2935–2942. [PubMed] [Google Scholar]
  26. Jones R. A., Nicholas B., Mian S., Davies P. J., Griffin M. Reduced expression of tissue transglutaminase in a human endothelial cell line leads to changes in cell spreading, cell adhesion and reduced polymerisation of fibronectin. J Cell Sci. 1997 Oct;110(Pt 19):2461–2472. doi: 10.1242/jcs.110.19.2461. [DOI] [PubMed] [Google Scholar]
  27. Knight C. R., Rees R. C., Elliott B. M., Griffin M. The existence of an inactive form of transglutaminase within metastasising tumours. Biochim Biophys Acta. 1990 Jun 12;1053(1):13–20. doi: 10.1016/0167-4889(90)90019-a. [DOI] [PubMed] [Google Scholar]
  28. Knight C. R., Rees R. C., Griffin M. Apoptosis: a potential role for cytosolic transglutaminase and its importance in tumour progression. Biochim Biophys Acta. 1991 Jun 5;1096(4):312–318. doi: 10.1016/0925-4439(91)90067-j. [DOI] [PubMed] [Google Scholar]
  29. Knight R. L., Hand D., Piacentini M., Griffin M. Characterization of the transglutaminase-mediated large molecular weight polymer from rat liver; its relationship to apoptosis. Eur J Cell Biol. 1993 Feb;60(1):210–216. [PubMed] [Google Scholar]
  30. Korner G., Deutsch V. R., Vlodavsky I., Eldor A. Effects of ionizing irradiation on endothelial cell transglutaminase. FEBS Lett. 1993 Sep 6;330(1):41–45. doi: 10.1016/0014-5793(93)80915-h. [DOI] [PubMed] [Google Scholar]
  31. Lee K. N., Birckbichler P. J., Patterson M. K., Jr GTP hydrolysis by guinea pig liver transglutaminase. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1370–1375. doi: 10.1016/0006-291x(89)90825-5. [DOI] [PubMed] [Google Scholar]
  32. Lorand L., Conrad S. M. Transglutaminases. Mol Cell Biochem. 1984;58(1-2):9–35. doi: 10.1007/BF00240602. [DOI] [PubMed] [Google Scholar]
  33. Lorand L. Transglutaminase-mediated cross-linking of proteins and cell ageing: the erythrocyte and lens models. Adv Exp Med Biol. 1988;231:79–94. doi: 10.1007/978-1-4684-9042-8_7. [DOI] [PubMed] [Google Scholar]
  34. Lu S., Saydak M., Gentile V., Stein J. P., Davies P. J. Isolation and characterization of the human tissue transglutaminase gene promoter. J Biol Chem. 1995 Apr 28;270(17):9748–9756. doi: 10.1074/jbc.270.17.9748. [DOI] [PubMed] [Google Scholar]
  35. Marvin K. W., George M. D., Fujimoto W., Saunders N. A., Bernacki S. H., Jetten A. M. Cornifin, a cross-linked envelope precursor in keratinocytes that is down-regulated by retinoids. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11026–11030. doi: 10.1073/pnas.89.22.11026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mian S., el Alaoui S., Lawry J., Gentile V., Davies P. J., Griffin M. The importance of the GTP-binding protein tissue transglutaminase in the regulation of cell cycle progression. FEBS Lett. 1995 Aug 14;370(1-2):27–31. doi: 10.1016/0014-5793(95)00782-5. [DOI] [PubMed] [Google Scholar]
  37. Mirza A., Liu S. L., Frizell E., Zhu J., Maddukuri S., Martinez J., Davies P., Schwarting R., Norton P., Zern M. A. A role for tissue transglutaminase in hepatic injury and fibrogenesis, and its regulation by NF-kappaB. Am J Physiol. 1997 Feb;272(2 Pt 1):G281–G288. doi: 10.1152/ajpgi.1997.272.2.G281. [DOI] [PubMed] [Google Scholar]
  38. Nagy L., Saydak M., Shipley N., Lu S., Basilion J. P., Yan Z. H., Syka P., Chandraratna R. A., Stein J. P., Heyman R. A. Identification and characterization of a versatile retinoid response element (retinoic acid receptor response element-retinoid X receptor response element) in the mouse tissue transglutaminase gene promoter. J Biol Chem. 1996 Feb 23;271(8):4355–4365. doi: 10.1074/jbc.271.8.4355. [DOI] [PubMed] [Google Scholar]
  39. Reed J. C., Cuddy M., Slabiak T., Croce C. M., Nowell P. C. Oncogenic potential of bcl-2 demonstrated by gene transfer. Nature. 1988 Nov 17;336(6196):259–261. doi: 10.1038/336259a0. [DOI] [PubMed] [Google Scholar]
  40. Schwartzman R. A., Cidlowski J. A. Mechanism of tissue-specific induction of internucleosomal deoxyribonucleic acid cleavage activity and apoptosis by glucocorticoids. Endocrinology. 1993 Aug;133(2):591–599. doi: 10.1210/endo.133.2.8393769. [DOI] [PubMed] [Google Scholar]
  41. Selkoe D. J., Ihara Y., Salazar F. J. Alzheimer's disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Science. 1982 Mar 5;215(4537):1243–1245. doi: 10.1126/science.6120571. [DOI] [PubMed] [Google Scholar]
  42. Sensel M. G., Legrand-Lorans A., Wang M. E., Bensadoun A. Isolation and characterization of clones for the rat hepatic lipase gene upstream regulatory region. Biochim Biophys Acta. 1990 Apr 6;1048(2-3):297–302. doi: 10.1016/0167-4781(90)90071-9. [DOI] [PubMed] [Google Scholar]
  43. Smethurst P. A., Griffin M. Measurement of tissue transglutaminase activity in a permeabilized cell system: its regulation by Ca2+ and nucleotides. Biochem J. 1996 Feb 1;313(Pt 3):803–808. doi: 10.1042/bj3130803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Suto N., Ikura K., Sasaki R. Expression induced by interleukin-6 of tissue-type transglutaminase in human hepatoblastoma HepG2 cells. J Biol Chem. 1993 Apr 5;268(10):7469–7473. [PubMed] [Google Scholar]
  45. Teale D. M., Rees R. C. Metastatic heterogeneity in a spontaneously metastatic HSV-2 induced hamster fibrosarcoma: association of phenotypic and genotypic properties with metastatic potential. Invasion Metastasis. 1987;7(3):129–143. [PubMed] [Google Scholar]
  46. Thomas G. L., Henley A., Rowland T. C., Sahai A., Griffin M., Birckbichler P. J. Enhanced apoptosis in transformed human lung fibroblasts after exposure to sodium butyrate. In Vitro Cell Dev Biol Anim. 1996 Sep;32(8):505–513. doi: 10.1007/BF02723054. [DOI] [PubMed] [Google Scholar]
  47. Thomázy V., Fésüs L. Differential expression of tissue transglutaminase in human cells. An immunohistochemical study. Cell Tissue Res. 1989 Jan;255(1):215–224. doi: 10.1007/BF00229084. [DOI] [PubMed] [Google Scholar]
  48. el Alaoui S., Lawry J., Griffin M. The cell cycle and induction of apoptosis in a hamster fibrosarcoma cell line treated with anti-cancer drugs: its importance to solid tumour chemotherapy. J Neurooncol. 1997 Jan;31(1-2):195–207. doi: 10.1023/a:1005782708570. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES