Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Apr 1;331(Pt 1):113–119. doi: 10.1042/bj3310113

Proxy activation of protein ErbB2 by heterologous ligands implies a heterotetrameric mode of receptor tyrosine kinase interaction.

G C Huang 1, X Ouyang 1, R J Epstein 1
PMCID: PMC1219327  PMID: 9512468

Abstract

The oncoprotein ErbB2 is frequently overexpressed in human tumours, but no activating ErbB2-specific ligand has yet been identified. Here we analyse the catalytic and oligomeric behaviour of ErbB2 using phosphorylation-state-specific antibodies which distinguish kinase-active and -inactive ErbB2 receptor subsets. Heregulin-alpha (HRG) activates ErbB2 in G8/DHFR 3T3 cells by selectively inducing hetero-oligomerization with kinase-defective ErbB3, indicating that heterologous transphosphorylation is an unlikely prerequisite for ErbB2 activation. HRG also triggers association of epidermal-growth-factor receptors (EGFR) with a kinase-inactive ErbB2 subset while reducing EGFR association with active ErbB2. Similarly, EGF treatment of A431 cells induces concomitant hetero-oligomerization of active ErbB2 with inactive EGFR, of active EGFR with inactive ErbB2, and of inactive ErbB2 with kinase-defective ErbB3. These combinatorial patterns of ligand-dependent oligomerization suggest a multivalent model of receptor tyrosine kinase interaction in which liganded homodimers provide stable oligomerization interfaces for unliganded ErbB2 or other bystander receptors. We submit that ErbB2 may be physiologically activated via a 'proxy' ligand-inducible heterotetrameric mechanism similar to that already established for transforming-growth-factor-beta type I receptors.

Full Text

The Full Text of this article is available as a PDF (354.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama T., Matsuda S., Namba Y., Saito T., Toyoshima K., Yamamoto T. The transforming potential of the c-erbB-2 protein is regulated by its autophosphorylation at the carboxyl-terminal domain. Mol Cell Biol. 1991 Feb;11(2):833–842. doi: 10.1128/mcb.11.2.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arteaga C. L., Ramsey T. T., Shawver L. K., Guyer C. A. Unliganded epidermal growth factor receptor dimerization induced by direct interaction of quinazolines with the ATP binding site. J Biol Chem. 1997 Sep 12;272(37):23247–23254. doi: 10.1074/jbc.272.37.23247. [DOI] [PubMed] [Google Scholar]
  3. Bargmann C. I., Hung M. C., Weinberg R. A. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell. 1986 Jun 6;45(5):649–657. doi: 10.1016/0092-8674(86)90779-8. [DOI] [PubMed] [Google Scholar]
  4. Bider M. D., Wahlberg J. M., Kammerer R. A., Spiess M. The oligomerization domain of the asialoglycoprotein receptor preferentially forms 2:2 heterotetramers in vitro. J Biol Chem. 1996 Dec 13;271(50):31996–32001. doi: 10.1074/jbc.271.50.31996. [DOI] [PubMed] [Google Scholar]
  5. Carraway K. L., 3rd, Cantley L. C. A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell. 1994 Jul 15;78(1):5–8. doi: 10.1016/0092-8674(94)90564-9. [DOI] [PubMed] [Google Scholar]
  6. Chantry A. The kinase domain and membrane localization determine intracellular interactions between epidermal growth factor receptors. J Biol Chem. 1995 Feb 17;270(7):3068–3073. [PubMed] [Google Scholar]
  7. Di Fiore P. P., Pierce J. H., Kraus M. H., Segatto O., King C. R., Aaronson S. A. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 1987 Jul 10;237(4811):178–182. doi: 10.1126/science.2885917. [DOI] [PubMed] [Google Scholar]
  8. DiGiovanna M. P., Carter D., Flynn S. D., Stern D. F. Functional assay for HER-2/neu demonstrates active signalling in a minority of HER-2/neu-overexpressing invasive human breast tumours. Br J Cancer. 1996 Sep;74(5):802–806. doi: 10.1038/bjc.1996.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Epstein R. J., Druker B. J., Roberts T. M., Stiles C. D. Modulation of a Mr 175,000 c-neu receptor isoform in G8/DHFR cells by serum starvation. J Biol Chem. 1990 Jun 25;265(18):10746–10751. [PubMed] [Google Scholar]
  10. Epstein R. J., Druker B. J., Roberts T. M., Stiles C. D. Synthetic phosphopeptide immunogens yield activation-specific antibodies to the c-erbB-2 receptor. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10435–10439. doi: 10.1073/pnas.89.21.10435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Epstein R. J. Preferential detection of catalytically inactive c-erbB-2 by antibodies to unphosphorylated peptides mimicking receptor tyrosine autophosphorylation sites. Oncogene. 1995 Jul 20;11(2):315–323. [PubMed] [Google Scholar]
  12. Fields B. A., Ober B., Malchiodi E. L., Lebedeva M. I., Braden B. C., Ysern X., Kim J. K., Shao X., Ward E. S., Mariuzza R. A. Crystal structure of the V alpha domain of a T cell antigen receptor. Science. 1995 Dec 15;270(5243):1821–1824. doi: 10.1126/science.270.5243.1821. [DOI] [PubMed] [Google Scholar]
  13. Gadella T. W., Jr, Jovin T. M. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J Cell Biol. 1995 Jun;129(6):1543–1558. doi: 10.1083/jcb.129.6.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gamett D. C., Pearson G., Cerione R. A., Friedberg I. Secondary dimerization between members of the epidermal growth factor receptor family. J Biol Chem. 1997 May 2;272(18):12052–12056. doi: 10.1074/jbc.272.18.12052. [DOI] [PubMed] [Google Scholar]
  15. Garlatti M., Daheshia M., Slater E., Bouguet J., Hanoune J., Beato M., Barouki R. A functional glucocorticoid-responsive unit composed of two overlapping inactive receptor-binding sites: evidence for formation of a receptor tetramer. Mol Cell Biol. 1994 Dec;14(12):8007–8017. doi: 10.1128/mcb.14.12.8007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gilboa L., Ben-Levy R., Yarden Y., Henis Y. I. Roles for a cytoplasmic tyrosine and tyrosine kinase activity in the interactions of Neu receptors with coated pits. J Biol Chem. 1995 Mar 31;270(13):7061–7067. doi: 10.1074/jbc.270.13.7061. [DOI] [PubMed] [Google Scholar]
  17. Guy P. M., Platko J. V., Cantley L. C., Cerione R. A., Carraway K. L., 3rd Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8132–8136. doi: 10.1073/pnas.91.17.8132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Herr A. B., Ornitz D. M., Sasisekharan R., Venkataraman G., Waksman G. Heparin-induced self-association of fibroblast growth factor-2. Evidence for two oligomerization processes. J Biol Chem. 1997 Jun 27;272(26):16382–16389. doi: 10.1074/jbc.272.26.16382. [DOI] [PubMed] [Google Scholar]
  19. Hudziak R. M., Lewis G. D., Winget M., Fendly B. M., Shepard H. M., Ullrich A. p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol. 1989 Mar;9(3):1165–1172. doi: 10.1128/mcb.9.3.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kersten S., Kelleher D., Chambon P., Gronemeyer H., Noy N. Retinoid X receptor alpha forms tetramers in solution. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8645–8649. doi: 10.1073/pnas.92.19.8645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kouhara H., Kurebayashi S., Hashimoto K., Kasayama S., Koga M., Kishimoto T., Sato B. Ligand-independent activation of tyrosine kinase in fibroblast growth factor receptor 1 by fusion with beta-galactosidase. Oncogene. 1995 Jun 15;10(12):2315–2322. [PubMed] [Google Scholar]
  22. Kraus M. H., Fedi P., Starks V., Muraro R., Aaronson S. A. Demonstration of ligand-dependent signaling by the erbB-3 tyrosine kinase and its constitutive activation in human breast tumor cells. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2900–2904. doi: 10.1073/pnas.90.7.2900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kraus M. H., Issing W., Miki T., Popescu N. C., Aaronson S. A. Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9193–9197. doi: 10.1073/pnas.86.23.9193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kreienkamp H. J., Maeda R. K., Sine S. M., Taylor P. Intersubunit contacts governing assembly of the mammalian nicotinic acetylcholine receptor. Neuron. 1995 Mar;14(3):635–644. doi: 10.1016/0896-6273(95)90320-8. [DOI] [PubMed] [Google Scholar]
  25. Kwatra M. M., Bigner D. D., Cohn J. A. The ligand binding domain of the epidermal growth factor receptor is not required for receptor dimerization. Biochim Biophys Acta. 1992 Mar 16;1134(2):178–181. doi: 10.1016/0167-4889(92)90042-a. [DOI] [PubMed] [Google Scholar]
  26. Lee J., Pilch P. F. The insulin receptor: structure, function, and signaling. Am J Physiol. 1994 Feb;266(2 Pt 1):C319–C334. doi: 10.1152/ajpcell.1994.266.2.C319. [DOI] [PubMed] [Google Scholar]
  27. Luo Z., Tzivion G., Belshaw P. J., Vavvas D., Marshall M., Avruch J. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature. 1996 Sep 12;383(6596):181–185. doi: 10.1038/383181a0. [DOI] [PubMed] [Google Scholar]
  28. Moscatello D. K., Montgomery R. B., Sundareshan P., McDanel H., Wong M. Y., Wong A. J. Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene. 1996 Jul 4;13(1):85–96. [PubMed] [Google Scholar]
  29. Moy F. J., Safran M., Seddon A. P., Kitchen D., Böhlen P., Aviezer D., Yayon A., Powers R. Properly oriented heparin-decasaccharide-induced dimers are the biologically active form of basic fibroblast growth factor. Biochemistry. 1997 Apr 22;36(16):4782–4791. doi: 10.1021/bi9625455. [DOI] [PubMed] [Google Scholar]
  30. Murali R., Brennan P. J., Kieber-Emmons T., Greene M. I. Structural analysis of p185c-neu and epidermal growth factor receptor tyrosine kinases: oligomerization of kinase domains. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6252–6257. doi: 10.1073/pnas.93.13.6252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. O'Bryan J. P., Fridell Y. W., Koski R., Varnum B., Liu E. T. The transforming receptor tyrosine kinase, Axl, is post-translationally regulated by proteolytic cleavage. J Biol Chem. 1995 Jan 13;270(2):551–557. doi: 10.1074/jbc.270.2.551. [DOI] [PubMed] [Google Scholar]
  32. Ouyang X., Gulliford T., Zhang H., Huang G. C., Epstein R. Human cancer cells exhibit protein kinase C-dependent c-erbB-2 transmodulation that correlates with phosphatase sensitivity and kinase activity. J Biol Chem. 1996 Sep 6;271(36):21786–21792. doi: 10.1074/jbc.271.36.21786. [DOI] [PubMed] [Google Scholar]
  33. Plowman G. D., Green J. M., Culouscou J. M., Carlton G. W., Rothwell V. M., Buckley S. Heregulin induces tyrosine phosphorylation of HER4/p180erbB4. Nature. 1993 Dec 2;366(6454):473–475. doi: 10.1038/366473a0. [DOI] [PubMed] [Google Scholar]
  34. Qian X., LeVea C. M., Freeman J. K., Dougall W. C., Greene M. I. Heterodimerization of epidermal growth factor receptor and wild-type or kinase-deficient Neu: a mechanism of interreceptor kinase activation and transphosphorylation. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1500–1504. doi: 10.1073/pnas.91.4.1500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schechter A. L., Stern D. F., Vaidyanathan L., Decker S. J., Drebin J. A., Greene M. I., Weinberg R. A. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature. 1984 Dec 6;312(5994):513–516. doi: 10.1038/312513a0. [DOI] [PubMed] [Google Scholar]
  36. Selva E., Raden D. L., Davis R. J. Mitogen-activated protein kinase stimulation by a tyrosine kinase-negative epidermal growth factor receptor. J Biol Chem. 1993 Jan 25;268(3):2250–2254. [PubMed] [Google Scholar]
  37. Sliwkowski M. X., Schaefer G., Akita R. W., Lofgren J. A., Fitzpatrick V. D., Nuijens A., Fendly B. M., Cerione R. A., Vandlen R. L., Carraway K. L., 3rd Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J Biol Chem. 1994 May 20;269(20):14661–14665. [PubMed] [Google Scholar]
  38. Spivak-Kroizman T., Rotin D., Pinchasi D., Ullrich A., Schlessinger J., Lax I. Heterodimerization of c-erbB2 with different epidermal growth factor receptor mutants elicits stimulatory or inhibitory responses. J Biol Chem. 1992 Apr 25;267(12):8056–8063. [PubMed] [Google Scholar]
  39. Taylor I. C., Roy S., Varmus H. E. Overexpression of the Sky receptor tyrosine kinase at the cell surface or in the cytoplasm results in ligand-independent activation. Oncogene. 1995 Dec 21;11(12):2619–2626. [PubMed] [Google Scholar]
  40. Tzahar E., Pinkas-Kramarski R., Moyer J. D., Klapper L. N., Alroy I., Levkowitz G., Shelly M., Henis S., Eisenstein M., Ratzkin B. J. Bivalence of EGF-like ligands drives the ErbB signaling network. EMBO J. 1997 Aug 15;16(16):4938–4950. doi: 10.1093/emboj/16.16.4938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Worthylake R., Wiley H. S. Structural aspects of the epidermal growth factor receptor required for transmodulation of erbB-2/neu. J Biol Chem. 1997 Mar 28;272(13):8594–8601. doi: 10.1074/jbc.272.13.8594. [DOI] [PubMed] [Google Scholar]
  42. Yamaguchi H., Hendrickson W. A. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature. 1996 Dec 5;384(6608):484–489. doi: 10.1038/384484a0. [DOI] [PubMed] [Google Scholar]
  43. Yamamoto T., Ikawa S., Akiyama T., Semba K., Nomura N., Miyajima N., Saito T., Toyoshima K. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature. 1986 Jan 16;319(6050):230–234. doi: 10.1038/319230a0. [DOI] [PubMed] [Google Scholar]
  44. Yamashita H., ten Dijke P., Franzén P., Miyazono K., Heldin C. H. Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem. 1994 Aug 5;269(31):20172–20178. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES