Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Apr 1;331(Pt 1):129–135. doi: 10.1042/bj3310129

Bombesin stimulates cholecystokinin secretion through mitogen-activated protein-kinase-dependent and -independent mechanisms in the enteroendocrine STC-1 cell line.

E Némoz-Gaillard 1, M Cordier-Bussat 1, C Filloux 1, J C Cuber 1, E Van Obberghen 1, J A Chayvialle 1, J Abello 1
PMCID: PMC1219329  PMID: 9512470

Abstract

Bombesin has been reported to stimulate cholecystokinin (CCK) secretion from rat duodeno-jejunal I-cells. Bombesin was shown to activate mitogen-activated protein kinases (MAPKs) in cell types such as Swiss 3T3 fibroblasts and rat pancreatic acinar cells. No information is available on whether MAPK is activated in intestinal endocrine cells upon bombesin stimulation. This was studied by using the CCK-producing enteroendocrine cell line STC-1. Bombesin stimulated markedly and transiently both p42(MAPK) and p44(MAPK), with a maximum at 2 min, and a decrease to basal levels within 10 min. As expected, bombesin stimulated MAPK kinase 1 (MEK-1) activity. Activation of protein kinase C (PKC) with PMA also stimulated p42(MAPK), p44(MAPK) and MEK-1. Treatment of cells with PD 098059 (at 10 microM or 30 microM), which selectively inhibits MEK phosphorylation, blocked bombesin-induced p42(MAPK) and p44(MAPK) activation for at least 90 min. However, PD 098059 inhibited bombesin- and PMA-stimulated CCK secretion during the first 15 min, but failed to significantly reduce CCK release at later times. Inhibition of PKC with staurosporine, or PKC down-regulation by prolonged treatment with PMA, both drastically decreased MEK-1, p42(MAPK) and p44(MAPK) activation upon bombesin stimulation. Additionally, PKC activation appeared to be required for both MAPK-dependent (early) and -independent (late) CCK responses to bombesin. It is concluded that the early CCK secretory response of STC-1 cells to bombesin involves MAPK pathway activation through a PKC-dependent mechanism, whereas the late phase of bombesin-induced CCK secretion, that also requires PKC, appears to result from a MAPK-independent process.

Full Text

The Full Text of this article is available as a PDF (438.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995 Nov 17;270(46):27489–27494. doi: 10.1074/jbc.270.46.27489. [DOI] [PubMed] [Google Scholar]
  2. Aucouturier S., Bernard C., Roche C., Philippe J., Chayvialle J. A., Cuber J. C. Functional coupling between the cyclic adenosine monophosphate pathway and cholecystokinin secretion in RIN cells. Biochem Biophys Res Commun. 1994 May 16;200(3):1382–1390. doi: 10.1006/bbrc.1994.1604. [DOI] [PubMed] [Google Scholar]
  3. Bragado M. J., Dabrowski A., Groblewski G. E., Williams J. A. CCK activates p90rsk in rat pancreatic acini through protein kinase C. Am J Physiol. 1997 Mar;272(3 Pt 1):G401–G407. doi: 10.1152/ajpgi.1997.272.3.G401. [DOI] [PubMed] [Google Scholar]
  4. Cabedo H., Felipo V., Miñana M. D., Grisolía S. H7, an inhibitor of protein kinase C, prevents serum-induced phosphorylation of Raf and MAP kinase in neuroblastoma cells. Neurosci Lett. 1996 Aug 16;214(1):13–16. doi: 10.1016/0304-3940(96)12867-6. [DOI] [PubMed] [Google Scholar]
  5. Chang C. H., Chey W. Y., Braggins L., Coy D. H., Chang T. M. Pituitary adenylate cyclase-activating polypeptide stimulates cholecystokinin secretion in STC-1 cells. Am J Physiol. 1996 Sep;271(3 Pt 1):G516–G523. doi: 10.1152/ajpgi.1996.271.3.G516. [DOI] [PubMed] [Google Scholar]
  6. Chang C. H., Chey W. Y., Sun Q., Leiter A., Chang T. M. Characterization of the release of cholecystokinin from a murine neuroendocrine tumor cell line, STC-1. Biochim Biophys Acta. 1994 Apr 28;1221(3):339–347. doi: 10.1016/0167-4889(94)90259-3. [DOI] [PubMed] [Google Scholar]
  7. Charlesworth A., Rozengurt E. Bombesin and neuromedin B stimulate the activation of p42(mapk) and p74(raf-1) via a protein kinase C-independent pathway in Rat-1 cells. Oncogene. 1997 May 15;14(19):2323–2329. doi: 10.1038/sj.onc.1201075. [DOI] [PubMed] [Google Scholar]
  8. Chery-Croze S., Kocher L., Bernard C., Chayvialle J. A. Substance P-, somatostatin-, vasoactive intestinal peptide- and cholecystokinin-like levels in the spinal cord of polyarthritic rats. Brain Res. 1985 Jul 22;339(1):183–185. doi: 10.1016/0006-8993(85)90642-0. [DOI] [PubMed] [Google Scholar]
  9. Cuber J. C., Bernard G., Fushiki T., Bernard C., Yamanishi R., Sugimoto E., Chayvialle J. A. Luminal CCK-releasing factors in the isolated vascularly perfused rat duodenojejunum. Am J Physiol. 1990 Aug;259(2 Pt 1):G191–G197. doi: 10.1152/ajpgi.1990.259.2.G191. [DOI] [PubMed] [Google Scholar]
  10. Cuber J. C., Vilas F., Charles N., Bernard C., Chayvialle J. A. Bombesin and nutrients stimulate release of CCK through distinct pathways in the rat. Am J Physiol. 1989 Jun;256(6 Pt 1):G989–G996. doi: 10.1152/ajpgi.1989.256.6.G989. [DOI] [PubMed] [Google Scholar]
  11. Dabrowski A., Grady T., Logsdon C. D., Williams J. A. Jun kinases are rapidly activated by cholecystokinin in rat pancreas both in vitro and in vivo. J Biol Chem. 1996 Mar 8;271(10):5686–5690. doi: 10.1074/jbc.271.10.5686. [DOI] [PubMed] [Google Scholar]
  12. Daulhac L., Kowalski-Chauvel A., Pradayrol L., Vaysse N., Seva C. Ca2+ and protein kinase C-dependent mechanisms involved in gastrin-induced Shc/Grb2 complex formation and P44-mitogen-activated protein kinase activation. Biochem J. 1997 Jul 15;325(Pt 2):383–389. doi: 10.1042/bj3250383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Duan R. D., Zheng C. F., Guan K. L., Williams J. A. Activation of MAP kinase kinase (MEK) and Ras by cholecystokinin in rat pancreatic acini. Am J Physiol. 1995 Jun;268(6 Pt 1):G1060–G1065. doi: 10.1152/ajpgi.1995.268.6.G1060. [DOI] [PubMed] [Google Scholar]
  14. Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686–7689. doi: 10.1073/pnas.92.17.7686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frödin M., Sekine N., Roche E., Filloux C., Prentki M., Wollheim C. B., Van Obberghen E. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1. J Biol Chem. 1995 Apr 7;270(14):7882–7889. doi: 10.1074/jbc.270.14.7882. [DOI] [PubMed] [Google Scholar]
  16. Hansson A. Map kinase activation in Swiss 3T3 cells stimulated with gastrin-releasing peptide is associated with increased phosphorylation of a 78,000 M(r) protein immunoprecipitated by anti-raf kinase anti-serum. Cell Signal. 1994 May;6(4):423–431. doi: 10.1016/0898-6568(94)90089-2. [DOI] [PubMed] [Google Scholar]
  17. Herzig K. H., Schön I., Tatemoto K., Ohe Y., Li Y., Fölsch U. R., Owyang C. Diazepam binding inhibitor is a potent cholecystokinin-releasing peptide in the intestine. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7927–7932. doi: 10.1073/pnas.93.15.7927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jovanovic J. N., Benfenati F., Siow Y. L., Sihra T. S., Sanghera J. S., Pelech S. L., Greengard P., Czernik A. J. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3679–3683. doi: 10.1073/pnas.93.8.3679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kahan C., Seuwen K., Meloche S., Pouysségur J. Coordinate, biphasic activation of p44 mitogen-activated protein kinase and S6 kinase by growth factors in hamster fibroblasts. Evidence for thrombin-induced signals different from phosphoinositide turnover and adenylylcyclase inhibition. J Biol Chem. 1992 Jul 5;267(19):13369–13375. [PubMed] [Google Scholar]
  20. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem. 1995 Jul 14;270(28):16483–16486. doi: 10.1074/jbc.270.28.16483. [DOI] [PubMed] [Google Scholar]
  21. Kortenjann M., Shaw P. E. The growing family of MAP kinases: regulation and specificity. Crit Rev Oncog. 1995;6(2):99–115. [PubMed] [Google Scholar]
  22. Kroog G. S., Jensen R. T., Battey J. F. Mammalian bombesin receptors. Med Res Rev. 1995 Sep;15(5):389–417. doi: 10.1002/med.2610150502. [DOI] [PubMed] [Google Scholar]
  23. Lewis L. D., Williams J. A. Regulation of cholecystokinin secretion by food, hormones, and neural pathways in the rat. Am J Physiol. 1990 Apr;258(4 Pt 1):G512–G518. doi: 10.1152/ajpgi.1990.258.4.G512. [DOI] [PubMed] [Google Scholar]
  24. Marquardt B., Frith D., Stabel S. Signalling from TPA to MAP kinase requires protein kinase C, raf and MEK: reconstitution of the signalling pathway in vitro. Oncogene. 1994 Nov;9(11):3213–3218. [PubMed] [Google Scholar]
  25. Matsubara M., Kusubata M., Ishiguro K., Uchida T., Titani K., Taniguchi H. Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J Biol Chem. 1996 Aug 30;271(35):21108–21113. doi: 10.1074/jbc.271.35.21108. [DOI] [PubMed] [Google Scholar]
  26. Mitchell F. M., Heasley L. E., Qian N. X., Zamarripa J., Johnson G. L. Differential modulation of bombesin-stimulated phospholipase C beta and mitogen-activated protein kinase activity by [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P. J Biol Chem. 1995 Apr 14;270(15):8623–8628. doi: 10.1074/jbc.270.15.8623. [DOI] [PubMed] [Google Scholar]
  27. Pang L., Decker S. J., Saltiel A. R. Bombesin and epidermal growth factor stimulate the mitogen-activated protein kinase through different pathways in Swiss 3T3 cells. Biochem J. 1993 Jan 1;289(Pt 1):283–287. doi: 10.1042/bj2890283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peraldi P., Frödin M., Barnier J. V., Calleja V., Scimeca J. C., Filloux C., Calothy G., Van Obberghen E. Regulation of the MAP kinase cascade in PC12 cells: B-Raf activates MEK-1 (MAP kinase or ERK kinase) and is inhibited by cAMP. FEBS Lett. 1995 Jan 9;357(3):290–296. doi: 10.1016/0014-5793(94)01376-c. [DOI] [PubMed] [Google Scholar]
  29. Rindi G., Grant S. G., Yiangou Y., Ghatei M. A., Bloom S. R., Bautch V. L., Solcia E., Polak J. M. Development of neuroendocrine tumors in the gastrointestinal tract of transgenic mice. Heterogeneity of hormone expression. Am J Pathol. 1990 Jun;136(6):1349–1363. [PMC free article] [PubMed] [Google Scholar]
  30. Scimeca J. C., Ballotti R., Nguyen T. T., Filloux C., Van Obberghen E. Tyrosine and threonine phosphorylation of an immunoaffinity-purified 44-kDa MAP kinase. Biochemistry. 1991 Sep 24;30(38):9313–9319. doi: 10.1021/bi00102a025. [DOI] [PubMed] [Google Scholar]
  31. Seger R., Krebs E. G. The MAPK signaling cascade. FASEB J. 1995 Jun;9(9):726–735. [PubMed] [Google Scholar]
  32. Seufferlein T., Withers D. J., Rozengurt E. Reduced requirement of mitogen-activated protein kinase (MAPK) activity for entry into the S phase of the cell cycle in Swiss 3T3 fibroblasts stimulated by bombesin and insulin. J Biol Chem. 1996 Aug 30;271(35):21471–21477. doi: 10.1074/jbc.271.35.21471. [DOI] [PubMed] [Google Scholar]
  33. Sharara A. I., Bouras E. P., Misukonis M. A., Liddle R. A. Evidence for indirect dietary regulation of cholecystokinin release in rats. Am J Physiol. 1993 Jul;265(1 Pt 1):G107–G112. doi: 10.1152/ajpgi.1993.265.1.G107. [DOI] [PubMed] [Google Scholar]
  34. Snow N. D., Prpic V., Mangel A. W., Sharara A. I., McVey D. C., Hurst L. J., Vigna S. R., Liddle R. A. Regulation of cholecystokinin secretion by bombesin in STC-1 cells. Am J Physiol. 1994 Nov;267(5 Pt 1):G859–G865. doi: 10.1152/ajpgi.1994.267.5.G859. [DOI] [PubMed] [Google Scholar]
  35. Spannagel A. W., Green G. M., Guan D., Liddle R. A., Faull K., Reeve J. R., Jr Purification and characterization of a luminal cholecystokinin-releasing factor from rat intestinal secretion. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4415–4420. doi: 10.1073/pnas.93.9.4415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Withers D. J., Bloom S. R., Rozengurt E. Dissociation of cAMP-stimulated mitogenesis from activation of the mitogen-activated protein kinase cascade in Swiss 3T3 cells. J Biol Chem. 1995 Sep 8;270(36):21411–21419. doi: 10.1074/jbc.270.36.21411. [DOI] [PubMed] [Google Scholar]
  37. Withers D. J., Seufferlein T., Mann D., Garcia B., Jones N., Rozengurt E. Rapamycin dissociates p70(S6K) activation from DNA synthesis stimulated by bombesin and insulin in Swiss 3T3 cells. J Biol Chem. 1997 Jan 24;272(4):2509–2514. doi: 10.1074/jbc.272.4.2509. [DOI] [PubMed] [Google Scholar]
  38. Yamada H., Strahler J., Welsh M. J., Bitar K. N. Activation of MAP kinase and translocation with HSP27 in bombesin-induced contraction of rectosigmoid smooth muscle. Am J Physiol. 1995 Nov;269(5 Pt 1):G683–G691. doi: 10.1152/ajpgi.1995.269.5.G683. [DOI] [PubMed] [Google Scholar]
  39. Zachary I., Rozengurt E. High-affinity receptors for peptides of the bombesin family in Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7616–7620. doi: 10.1073/pnas.82.22.7616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zachary I., Sinnett-Smith J., Rozengurt E. Bombesin, vasopressin, and endothelin stimulation of tyrosine phosphorylation in Swiss 3T3 cells. Identification of a novel tyrosine kinase as a major substrate. J Biol Chem. 1992 Sep 25;267(27):19031–19034. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES