Abstract
Each of two histidine residues and one tryptophan residue in thermophilic bacterium PS-3 inorganic pyrophosphatase (PPase) was replaced by alanine. The activities of the H125A and W143A variants decreased to one-fifth, whereas the activity of H118A remained unaltered. CD spectra in the near-UV region indicated that the conformations of the first two variants changed with the substitution. In contrast with wild-type PPase, which is hexameric beyond an enzyme concentration of 0.1 microM in the presence of Mg2+, the H118A and H125A variants cannot be assembled from trimers into hexamers at less than an enzyme concentration of 10 microM even at a higher concentration of Mg2+. In particular, H118A was irreversibly inactivated in a diluted state. In contrast, the enzyme concentration dependence of W143A PPase activity was almost the same as that of wild-type PPase. These results indicated that His-118 and His-125 are important for both trimer-trimer interaction and structural integrity, whereas Trp-143 is important structurally. The trimer-trimer interaction is absolutely necessary for the thermostability of the PS-3 enzyme.
Full Text
The Full Text of this article is available as a PDF (633.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avaeva S. M., Rodina E. V., Kurilova S. A., Nazarova T. I., Vorobyeva N. N. Effect of D42N substitution in Escherichia coli inorganic pyrophosphatase on catalytic activity and Mg2+ binding. FEBS Lett. 1996 Aug 26;392(2):91–94. doi: 10.1016/0014-5793(96)00791-0. [DOI] [PubMed] [Google Scholar]
- Avaeva S., Ignatov P., Kurilova S., Nazarova T., Rodina E., Vorobyeva N., Oganessyan V., Harutyunyan E. Escherichia coli inorganic pyrophosphatase: site-directed mutagenesis of the metal binding sites. FEBS Lett. 1996 Dec 9;399(1-2):99–102. doi: 10.1016/s0014-5793(96)01296-3. [DOI] [PubMed] [Google Scholar]
- Baykov A. A., Dudarenkov V. Y., Käpylä J., Salminen T., Hyytiä T., Kasho V. N., Husgafvel S., Cooperman B. S., Goldman A., Lahti R. Dissociation of hexameric Escherichia coli inorganic pyrophosphatase into trimers on His-136-->Gln or His-140-->Gln substitution and its effect on enzyme catalytic properties. J Biol Chem. 1995 Dec 22;270(51):30804–30812. doi: 10.1074/jbc.270.51.30804. [DOI] [PubMed] [Google Scholar]
- Cooperman B. S., Baykov A. A., Lahti R. Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Trends Biochem Sci. 1992 Jul;17(7):262–266. doi: 10.1016/0968-0004(92)90406-y. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Hachimori A., Shiroya Y., Hirato A., Miyahara T., Samejima T. Effects of divalent cations on thermophilic inorganic pyrophosphatase. J Biochem. 1979 Jul;86(1):121–130. [PubMed] [Google Scholar]
- Hachimori A., Takeda A., Kaibuchi M., Ohkawara N., Samejima T. Purification and characterization of inorganic pyrophosphatase from Bacillus stearothermophilus. J Biochem. 1975 Jun;77(6):1177–1183. [PubMed] [Google Scholar]
- Heikinheimo P., Pohjanjoki P., Helminen A., Tasanen M., Cooperman B. S., Goldman A., Baykov A., Lahti R. A site-directed mutagenesis study of Saccharomyces cerevisiae pyrophosphatase. Functional conservation of the active site of soluble inorganic pyrophosphatases. Eur J Biochem. 1996 Jul 1;239(1):138–143. doi: 10.1111/j.1432-1033.1996.0138u.x. [DOI] [PubMed] [Google Scholar]
- Hirano N., Ichiba T., Hachimori A. The role of histidine-118 of inorganic pyrophosphatase from thermophilic bacterium PS-3. Biochem J. 1991 Sep 1;278(Pt 2):595–599. doi: 10.1042/bj2780595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ichiba T., Takenaka O., Samejima T., Hachimori A. Primary structure of the inorganic pyrophosphatase from thermophilic bacterium PS-3. J Biochem. 1990 Oct;108(4):572–578. doi: 10.1093/oxfordjournals.jbchem.a123244. [DOI] [PubMed] [Google Scholar]
- Kaneko S., Ichiba T., Hirano N., Hachimori A. Modification of a single tryptophan of the inorganic pyrophosphatase from thermophilic bacterium PS-3: possible involvement in its substrate binding. Biochim Biophys Acta. 1991 Apr 29;1077(3):281–284. doi: 10.1016/0167-4838(91)90541-7. [DOI] [PubMed] [Google Scholar]
- Kankare J., Neal G. S., Salminen T., Glumoff T., Glumhoff T [corrected to Glumoff T. ]., Cooperman B. S., Lahti R., Goldman A. The structure of E.coli soluble inorganic pyrophosphatase at 2.7 A resolution. Protein Eng. 1994 Jul;7(7):823–830. doi: 10.1093/protein/7.7.823. [DOI] [PubMed] [Google Scholar]
- Käpylä J., Hyytiä T., Lahti R., Goldman A., Baykov A. A., Cooperman B. S. Effect of D97E substitution on the kinetic and thermodynamic properties of Escherichia coli inorganic pyrophosphatase. Biochemistry. 1995 Jan 24;34(3):792–800. doi: 10.1021/bi00003a012. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lahti R., Pitkäranta T., Valve E., Ilta I., Kukko-Kalske E., Heinonen J. Cloning and characterization of the gene encoding inorganic pyrophosphatase of Escherichia coli K-12. J Bacteriol. 1988 Dec;170(12):5901–5907. doi: 10.1128/jb.170.12.5901-5907.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lahti R., Pohjanoksa K., Pitkäranta T., Heikinheimo P., Salminen T., Meyer P., Heinonen J. A site-directed mutagenesis study on Escherichia coli inorganic pyrophosphatase. Glutamic acid-98 and lysine-104 are important for structural integrity, whereas aspartic acids-97 and -102 are essential for catalytic activity. Biochemistry. 1990 Jun 19;29(24):5761–5766. doi: 10.1021/bi00476a017. [DOI] [PubMed] [Google Scholar]
- Lahti R., Salminen T., Latonen S., Heikinheimo P., Pohjanoksa K., Heinonen J. Genetic engineering of Escherichia coli inorganic pyrophosphatase. Tyr55 and Tyr141 are important for the structural integrity. Eur J Biochem. 1991 Jun 1;198(2):293–297. doi: 10.1111/j.1432-1033.1991.tb16015.x. [DOI] [PubMed] [Google Scholar]
- Maruyama S., Maeshima M., Nishimura M., Aoki M., Ichiba T., Sekiguchi J., Hachimori A. Cloning and expression of the inorganic pyrophosphatase gene from thermophilic bacterium PS-3. Biochem Mol Biol Int. 1996 Nov;40(4):679–688. doi: 10.1080/15216549600201283. [DOI] [PubMed] [Google Scholar]
- ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
- Richter O. M., Schäfer G. Purification and enzymic characterization of the cytoplasmic pyrophosphatase from the thermoacidophilic archaebacterium Thermoplasma acidophilum. Eur J Biochem. 1992 Oct 1;209(1):343–349. doi: 10.1111/j.1432-1033.1992.tb17295.x. [DOI] [PubMed] [Google Scholar]
- Salminen T., Käpylä J., Heikinheimo P., Kankare J., Goldman A., Heinonen J., Baykov A. A., Cooperman B. S., Lahti R. Structure and function analysis of Escherichia coli inorganic pyrophosphatase: is a hydroxide ion the key to catalysis? Biochemistry. 1995 Jan 24;34(3):782–791. doi: 10.1021/bi00003a011. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teplyakov A., Obmolova G., Wilson K. S., Ishii K., Kaji H., Samejima T., Kuranova I. Crystal structure of inorganic pyrophosphatase from Thermus thermophilus. Protein Sci. 1994 Jul;3(7):1098–1107. doi: 10.1002/pro.5560030713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Velichko I. S., Volk S. E., Dudarenkov VYu, Magretova N. N., Chernyak VYa, Goldman A., Cooperman B. S., Lahti R., Baykov A. A., Velichko I. V. Cold lability of the mutant forms of Escherichia coli inorganic pyrophosphatase. FEBS Lett. 1995 Feb 6;359(1):20–22. doi: 10.1016/0014-5793(95)00003-r. [DOI] [PubMed] [Google Scholar]
- Volk S. E., Dudarenkov V. Y., Käpylä J., Kasho V. N., Voloshina O. A., Salminen T., Goldman A., Lahti R., Baykov A. A., Cooperman B. S. Effect of E20D substitution in the active site of Escherichia coli inorganic pyrophosphatase on its quaternary structure and catalytic properties. Biochemistry. 1996 Apr 16;35(15):4662–4669. doi: 10.1021/bi952636m. [DOI] [PubMed] [Google Scholar]
