Abstract
The changes in the immunological properties of apolipoprotein AI (apo-AI) and AII (apo-AII) during the oxidation of the high-density lipoprotein HDL3 and its influence on the binding of heavily oxidized low-density lipoprotein (LDL) to type I and III collagen were investigated. Oxidation of HDL3 or Eu3+-labelled HDL3 was performed with CuSO4, varying the time of oxidation. Oxidation of HDL3 resulted in an increase in lipid hydroperoxides and enhanced the negative charge of this lipoprotein. Immunological studies with a solid-phase sandwich immunoassay revealed a strong increase in binding of Eu3+-labelled HDL3 to polyclonal antibodies against apo-AI and apo-AII within the first 4 h of oxidation. Neo-epitopes were also formed by interaction of the apolipoproteins with degradation products from the lipid peroxidation of polyunsaturated fatty acids, as evidenced by an immunoreaction of oxidized Eu3+-labelled HDL3 with antibodies to 4-hydroxynonenal (4-HNE)- and malondialdehyde (MDA)-protein adducts. Western blot analysis of oxidized HDL3 samples showed, as well as apo-AI and apo-AII bands, larger aggregated apolipoproteins, occurring after 0.5-2.5 h of oxidation. These aggregates were recognized by antibodies to apo-AI and apo-AII as well as by antibodies to 4-HNE- and MDA-protein adducts. Furthermore the original apo-AI monomers and apo-AII dimers decreased during the oxidation. The ability of native and oxidized HDL3 to prevent the binding of Eu3+-labelled 24 h-oxidized LDL to collagen on microtitration plates was estimated. Interestingly, 2 h-oxidized HDL3 competed most with the binding of 24 h-oxidized LDL on collagen type I and type III, followed by native HDL3. However, 24 h-oxidized HDL3 was a weaker competitor. Thus oxidative modification of HDL3 strongly alters the immunological properties of this lipoprotein and its binding affinity for collagen.
Full Text
The Full Text of this article is available as a PDF (432.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Assmann G., Funke H., Schriewer H. The relationship of HDL-apolipoprotein A-I and HDL-Cholesterol to risk factors of coronary heart disease: initial results of the prospective epidemiological study in company employees in Westfalia. J Clin Chem Clin Biochem. 1982 May;20(5):287–289. doi: 10.1515/cclm.1982.20.5.287. [DOI] [PubMed] [Google Scholar]
- Avogaro P., Cazzolato G., Bittolo Bon G., Belussi F., Quinci G. B. Values of APO-1 and APO-B in humans according to age and sex. Clin Chim Acta. 1979 Jul 16;95(2):311–315. doi: 10.1016/0009-8981(79)90373-5. [DOI] [PubMed] [Google Scholar]
- Banka C. L. High density lipoprotein and lipoprotein oxidation. Curr Opin Lipidol. 1996 Jun;7(3):139–142. doi: 10.1097/00041433-199606000-00005. [DOI] [PubMed] [Google Scholar]
- Barter P. J., Rye K. A. Molecular mechanisms of reverse cholesterol transport. Curr Opin Lipidol. 1996 Apr;7(2):82–87. doi: 10.1097/00041433-199604000-00006. [DOI] [PubMed] [Google Scholar]
- Bowry V. W., Stanley K. K., Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10316–10320. doi: 10.1073/pnas.89.21.10316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. Atherosclerosis. Scavenging for receptors. Nature. 1990 Feb 8;343(6258):508–509. doi: 10.1038/343508a0. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Ho Y. K., Goldstein J. L. The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem. 1980 Oct 10;255(19):9344–9352. [PubMed] [Google Scholar]
- Chen Q., Esterbauer H., Jürgens G. Studies on epitopes on low-density lipoprotein modified by 4-hydroxynonenal. Biochemical characterization and determination. Biochem J. 1992 Nov 15;288(Pt 1):249–254. doi: 10.1042/bj2880249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg S. High density lipoprotein metabolism. J Lipid Res. 1984 Oct;25(10):1017–1058. [PubMed] [Google Scholar]
- Gordon T., Castelli W. P., Hjortland M. C., Kannel W. B., Dawber T. R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977 May;62(5):707–714. doi: 10.1016/0002-9343(77)90874-9. [DOI] [PubMed] [Google Scholar]
- Greilberger J., Schmut O., Jürgens G. In vitro interactions of oxidatively modified LDL with type I, II, III, IV, and V collagen, laminin, fibronectin, and poly-D-lysine. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):2721–2728. doi: 10.1161/01.atv.17.11.2721. [DOI] [PubMed] [Google Scholar]
- Jimi S., Sakata N., Matunaga A., Takebayashi S. Low density lipoproteins bind more to type I and III collagens by negative charge-dependent mechanisms than to type IV and V collagens. Atherosclerosis. 1994 May;107(1):109–116. doi: 10.1016/0021-9150(94)90146-5. [DOI] [PubMed] [Google Scholar]
- Jürgens G., Ashy A., Esterbauer H. Detection of new epitopes formed upon oxidation of low-density lipoprotein, lipoprotein (a) and very-low-density lipoprotein. Use of an antiserum against 4-hydroxynonenal-modified low-density lipoprotein. Biochem J. 1990 Jan 15;265(2):605–608. doi: 10.1042/bj2650605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jürgens G., Lang J., Esterbauer H. Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal. Biochim Biophys Acta. 1986 Jan 3;875(1):103–114. doi: 10.1016/0005-2760(86)90016-0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mackness M. I., Durrington P. N. HDL, its enzymes and its potential to influence lipid peroxidation. Atherosclerosis. 1995 Jun;115(2):243–253. doi: 10.1016/0021-9150(94)05524-m. [DOI] [PubMed] [Google Scholar]
- Marcel Y. L., Jewer D., Leblond L., Weech P. K., Milne R. W. Lipid peroxidation changes the expression of specific epitopes of apolipoprotein A-I. J Biol Chem. 1989 Nov 25;264(33):19942–19950. [PubMed] [Google Scholar]
- Mazière J. C., Myara I., Salmon S., Auclair M., Haigle J., Santus R., Mazière C. Copper- and malondialdehyde-induced modification of high density lipoprotein and parallel loss of lecithin cholesterol acyltransferase activation. Atherosclerosis. 1993 Dec;104(1-2):213–219. doi: 10.1016/0021-9150(93)90192-w. [DOI] [PubMed] [Google Scholar]
- McCall M. R., Tang J. Y., Bielicki J. K., Forte T. M. Inhibition of lecithin-cholesterol acyltransferase and modification of HDL apolipoproteins by aldehydes. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1599–1606. doi: 10.1161/01.atv.15.10.1599. [DOI] [PubMed] [Google Scholar]
- Miller G. J. High density lipoproteins and atherosclerosis. Annu Rev Med. 1980;31:97–108. doi: 10.1146/annurev.me.31.020180.000525. [DOI] [PubMed] [Google Scholar]
- Nagano Y., Arai H., Kita T. High density lipoprotein loses its effect to stimulate efflux of cholesterol from foam cells after oxidative modification. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6457–6461. doi: 10.1073/pnas.88.15.6457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parthasarathy S., Printz D. J., Boyd D., Joy L., Steinberg D. Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis. 1986 Sep-Oct;6(5):505–510. doi: 10.1161/01.atv.6.5.505. [DOI] [PubMed] [Google Scholar]
- Quinn M. T., Parthasarathy S., Fong L. G., Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A. 1987 May;84(9):2995–2998. doi: 10.1073/pnas.84.9.2995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med. 1986 Feb 20;314(8):488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
- Shoukry M. I., Gong E. L., Nichols A. V. Apolipoprotein-lipid association in oxidatively modified HDL and LDL. Biochim Biophys Acta. 1994 Jan 20;1210(3):355–360. doi: 10.1016/0005-2760(94)90240-2. [DOI] [PubMed] [Google Scholar]
- Sparrow C. P., Parthasarathy S., Steinberg D. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. J Biol Chem. 1989 Feb 15;264(5):2599–2604. [PubMed] [Google Scholar]
- Tall A. R., Small D. M. Plasma high-density lipoproteins. N Engl J Med. 1978 Nov 30;299(22):1232–1236. doi: 10.1056/NEJM197811302992207. [DOI] [PubMed] [Google Scholar]
- Vollmer E., Brust J., Roessner A., Bosse A., Burwikel F., Kaesberg B., Harrach B., Robenek H., Böcker W. Distribution patterns of apolipoproteins A1, A2, and B in the wall of atherosclerotic vessels. Virchows Arch A Pathol Anat Histopathol. 1991;419(2):79–88. doi: 10.1007/BF01600220. [DOI] [PubMed] [Google Scholar]
- Wang X. L., Dudman N. P., Wang J., Wilcken D. E. Mechanisms responsible for increasing immunoreactivity of apolipoprotein A-I with storage: the role of oxidation. Clin Chem. 1989 Oct;35(10):2082–2086. [PubMed] [Google Scholar]
- Watson A. D., Berliner J. A., Hama S. Y., La Du B. N., Faull K. F., Fogelman A. M., Navab M. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J Clin Invest. 1995 Dec;96(6):2882–2891. doi: 10.1172/JCI118359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- el-Saadani M., Esterbauer H., el-Sayed M., Goher M., Nassar A. Y., Jürgens G. A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent. J Lipid Res. 1989 Apr;30(4):627–630. [PubMed] [Google Scholar]