Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Apr 1;331(Pt 1):239–244. doi: 10.1042/bj3310239

Purification and characterization of a new cystatin inhibitor from Taiwan cobra (Naja naja atra) venom.

M Brillard-Bourdet 1, V Nguyên 1, M Ferrer-di Martino 1, F Gauthier 1, T Moreau 1
PMCID: PMC1219344  PMID: 9512485

Abstract

Cobra cystatin, a new cysteine-proteinase inhibitor of the cystatin superfamily, was isolated from the venom of the Taiwan cobra (Naja naja atra) by affinity chromatography on S-carboxymethylpapain-Sepharose and reverse-phase chromatography. The venom contained two forms of the inhibitor, one of 11870 Da and the other of 12095 Da, as determined by MS, and pI values of 6.2 and 6.1. Cobra cystatin strongly inhibits cysteine proteinases of the papain family, but not calpain. Papain, cathepsin L, cathepsin B and cathepsin S are inhibited with Ki values of 0.19, 0.1, 2.5 and 1.2 nM respectively. The amino acid sequence of cobra cystatin shows that it is a Type 2 cystatin. The amino acid sequence is 73% identical with that of the cystatin in African-puff-adder (Bitis arietans) venom, with which it shares a unique six-residue insertion in a region opposite the reactive inhibitory site. Cobra cystatin is 25-42% identical with other Type 2 cystatins, the most closely related being the recently described human cystatin M, which also has a similar five-residue insertion starting at position 76 (chicken cystatin numbering). A molecular phylogenetic tree of 16 representative members of Family 2 cystatins was constructed by parsimony analysis; it suggests that snake cystatins, together with Tachypleus tridentatus (Japanese horseshoe crab) cystatin and human cystatin M, form a new subfamily within cystatin Family 2.

Full Text

The Full Text of this article is available as a PDF (851.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson M., Mason R. W., Hansson H., Buttle D. J., Grubb A., Ohlsson K. Human cystatin C. role of the N-terminal segment in the inhibition of human cysteine proteinases and in its inactivation by leucocyte elastase. Biochem J. 1991 Feb 1;273(Pt 3):621–626. doi: 10.1042/bj2730621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anastasi A., Brown M. A., Kembhavi A. A., Nicklin M. J., Sayers C. A., Sunter D. C., Barrett A. J. Cystatin, a protein inhibitor of cysteine proteinases. Improved purification from egg white, characterization, and detection in chicken serum. Biochem J. 1983 Apr 1;211(1):129–138. doi: 10.1042/bj2110129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Auerswald E. A., Nägler D. K., Schulze A. J., Engh R. A., Genenger G., Machleidt W., Fritz H. Production, inhibitory activity, folding and conformational analysis of an N-terminal and an internal deletion variant of chicken cystatin. Eur J Biochem. 1994 Sep 1;224(2):407–415. doi: 10.1111/j.1432-1033.1994.00407.x. [DOI] [PubMed] [Google Scholar]
  4. Barrett A. J. Classification of peptidases. Methods Enzymol. 1994;244:1–15. doi: 10.1016/0076-6879(94)44003-4. [DOI] [PubMed] [Google Scholar]
  5. Björk I., Pol E., Raub-Segall E., Abrahamson M., Rowan A. D., Mort J. S. Differential changes in the association and dissociation rate constants for binding of cystatins to target proteinases occurring on N-terminal truncation of the inhibitors indicate that the interaction mechanism varies with different enzymes. Biochem J. 1994 Apr 1;299(Pt 1):219–225. doi: 10.1042/bj2990219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bode W., Engh R., Musil D., Thiele U., Huber R., Karshikov A., Brzin J., Kos J., Turk V. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 1988 Aug;7(8):2593–2599. doi: 10.1002/j.1460-2075.1988.tb03109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown W. M., Dziegielewska K. M. Friends and relations of the cystatin superfamily--new members and their evolution. Protein Sci. 1997 Jan;6(1):5–12. doi: 10.1002/pro.5560060102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brömme D., McGrath M. E. High level expression and crystallization of recombinant human cathepsin S. Protein Sci. 1996 Apr;5(4):789–791. doi: 10.1002/pro.5560050426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brömme D., Rinne R., Kirschke H. Tight-binding inhibition of cathepsin S by cystatins. Biomed Biochim Acta. 1991;50(4-6):631–635. [PubMed] [Google Scholar]
  10. Engh R. A., Dieckmann T., Bode W., Auerswald E. A., Turk V., Huber R., Oschkinat H. Conformational variability of chicken cystatin. Comparison of structures determined by X-ray diffraction and NMR spectroscopy. J Mol Biol. 1993 Dec 20;234(4):1060–1069. doi: 10.1006/jmbi.1993.1659. [DOI] [PubMed] [Google Scholar]
  11. Esnard F., Esnard A., Faucher D., Capony J. P., Derancourt J., Brillard M., Gauthier F. Rat cystatin C: the complete amino acid sequence reveals a site for N-glycosylation. Biol Chem Hoppe Seyler. 1990 May;371 (Suppl):161–166. [PubMed] [Google Scholar]
  12. Evans H. J., Barrett A. J. A cystatin-like cysteine proteinase inhibitor from venom of the African puff adder (Bitis arietans). Biochem J. 1987 Sep 15;246(3):795–797. doi: 10.1042/bj2460795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Felsenstein J. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 1996;266:418–427. doi: 10.1016/s0076-6879(96)66026-1. [DOI] [PubMed] [Google Scholar]
  14. Gerhartz B., Engh R. A., Mentele R., Eckerskorn C., Torquato R., Wittmann J., Kolb H. J., Machleidt W., Fritz H., Auerswald E. A. Quail cystatin: isolation and characterisation of a new member of the cystatin family and its hypothetical interaction with cathepsin B. FEBS Lett. 1997 Aug 4;412(3):551–558. doi: 10.1016/s0014-5793(97)00806-5. [DOI] [PubMed] [Google Scholar]
  15. Guenneugues M., Ménez A. Structures et fonctions de toxines animales. C R Seances Soc Biol Fil. 1997;191(3):329–344. [PubMed] [Google Scholar]
  16. Henderson P. J. A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors. Biochem J. 1972 Apr;127(2):321–333. doi: 10.1042/bj1270321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hokama Y., Iwanaga S., Tatsuki T., Suzuki T. Snake venom proteinase inhibitors. III. Isolation of five polypeptide inhibitors from the venoms of Hemachatus haemachatus (Ringhal's corbra) and Naja nivea (Cape cobra) and the complete amino acid sequences of two of them. J Biochem. 1976 Mar;79(3):559–578. doi: 10.1093/oxfordjournals.jbchem.a131100. [DOI] [PubMed] [Google Scholar]
  18. Illy C., Quraishi O., Wang J., Purisima E., Vernet T., Mort J. S. Role of the occluding loop in cathepsin B activity. J Biol Chem. 1997 Jan 10;272(2):1197–1202. doi: 10.1074/jbc.272.2.1197. [DOI] [PubMed] [Google Scholar]
  19. Joubert F. J., Strydom D. J. Snake venoms. The amino-acid sequence of trypsin inhibitor E of Dendroaspis polylepis polylepis (Black Mamba) venom. Eur J Biochem. 1978 Jun 1;87(1):191–198. doi: 10.1111/j.1432-1033.1978.tb12366.x. [DOI] [PubMed] [Google Scholar]
  20. Kregar I., Locnikar P., Popović T., Suhar A., Lah T., Ritonja A., Gubensek F., Turk V. Bovine intracellular cysteine proteinases. Acta Biol Med Ger. 1981;40(10-11):1433–1438. [PubMed] [Google Scholar]
  21. Kress L. F., Catanese J., Hirayama T. Analysis of the effects of snake venom proteinases on the activity of human plasma C1 esterase inhibitor, alpha 1-antichymotrypsin and alpha 2-antiplasmin. Biochim Biophys Acta. 1983 Jun 15;745(2):113–120. doi: 10.1016/0167-4838(83)90039-0. [DOI] [PubMed] [Google Scholar]
  22. Lindahl P., Ripoll D., Abrahamson M., Mort J. S., Storer A. C. Evidence for the interaction of valine-10 in cystatin C with the S2 subsite of cathepsin B. Biochemistry. 1994 Apr 12;33(14):4384–4392. doi: 10.1021/bi00180a036. [DOI] [PubMed] [Google Scholar]
  23. Lås T., Olsson I., Söderberg L. High-voltage isoelectric focusing with pharmalyte: field strength and temperature distribution, zone sharpening, isoelectric spectra, and pI determinations. Anal Biochem. 1980 Jan 15;101(2):449–461. doi: 10.1016/0003-2697(80)90212-2. [DOI] [PubMed] [Google Scholar]
  24. Markland F. S., Jr Snake venoms. Drugs. 1997;54 (Suppl 3):1–10. doi: 10.2165/00003495-199700543-00003. [DOI] [PubMed] [Google Scholar]
  25. Mason R. W., Green G. D., Barrett A. J. Human liver cathepsin L. Biochem J. 1985 Feb 15;226(1):233–241. doi: 10.1042/bj2260233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Moreau T., Esnard F., Gutman N., Degand P., Gauthier F. Cysteine-proteinase-inhibiting function of T kininogen and of its proteolytic fragments. Eur J Biochem. 1988 Apr 5;173(1):185–190. doi: 10.1111/j.1432-1033.1988.tb13983.x. [DOI] [PubMed] [Google Scholar]
  27. Moreau T., Gutman N., el Moujahed A., Esnard F., Gauthier F. Relationship between the cysteine-proteinase-inhibitory function of rat T kininogen and the release of immunoreactive kinin upon trypsin treatment. Eur J Biochem. 1986 Sep 1;159(2):341–346. doi: 10.1111/j.1432-1033.1986.tb09873.x. [DOI] [PubMed] [Google Scholar]
  28. Musil D., Zucic D., Turk D., Engh R. A., Mayr I., Huber R., Popovic T., Turk V., Towatari T., Katunuma N. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J. 1991 Sep;10(9):2321–2330. doi: 10.1002/j.1460-2075.1991.tb07771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ritonja A., Evans H. J., Machleidt W., Barrett A. J. Amino acid sequence of a cystatin from venom of the African puff adder (Bitis arietans). Biochem J. 1987 Sep 15;246(3):799–802. doi: 10.1042/bj2460799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ritonja A., Turk V., Gubensek F. Serine proteinase inhibitors from Vipera ammodytes venom. Isolation and kinetic studies. Eur J Biochem. 1983 Jun 15;133(2):427–432. doi: 10.1111/j.1432-1033.1983.tb07481.x. [DOI] [PubMed] [Google Scholar]
  31. Shafqat J., Beg O. U., Yin S. J., Zaidi Z. H., Jörnvall H. Primary structure and functional properties of cobra (Naja naja naja) venom Kunitz-type trypsin inhibitor. Eur J Biochem. 1990 Dec 12;194(2):337–341. doi: 10.1111/j.1432-1033.1990.tb15622.x. [DOI] [PubMed] [Google Scholar]
  32. Sotiropoulou G., Anisowicz A., Sager R. Identification, cloning, and characterization of cystatin M, a novel cysteine proteinase inhibitor, down-regulated in breast cancer. J Biol Chem. 1997 Jan 10;272(2):903–910. doi: 10.1074/jbc.272.2.903. [DOI] [PubMed] [Google Scholar]
  33. Stubbs M. T., Laber B., Bode W., Huber R., Jerala R., Lenarcic B., Turk V. The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 1990 Jun;9(6):1939–1947. doi: 10.1002/j.1460-2075.1990.tb08321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takahashi H., Iwanaga S., Suzuki T. Isolation of a novel inhibitor of kallikrein, plasmin and trypsin from the venom of Russell's viper (Vipera russelli). FEBS Lett. 1972 Nov 1;27(2):207–210. doi: 10.1016/0014-5793(72)80621-5. [DOI] [PubMed] [Google Scholar]
  35. Takahashi H., Iwanaga S., Suzuki T. Snake venom proteinase inhibitors. I. Isolation and properties of two inhibitors of kallikrein, trypsin, plasmin, and alpha-chymotrypsin from the venom of Russell's viper (Vipera russelli). J Biochem. 1974 Oct;76(4):709–719. [PubMed] [Google Scholar]
  36. Tan N. H., Tan C. S. A comparative study of cobra (Naja) venom enzymes. Comp Biochem Physiol B. 1988;90(4):745–750. doi: 10.1016/0305-0491(88)90329-x. [DOI] [PubMed] [Google Scholar]
  37. Tchoupe J. R., Moreau T., Gauthier F., Bieth J. G. Photometric or fluorometric assay of cathepsin B, L and H and papain using substrates with an aminotrifluoromethylcoumarin leaving group. Biochim Biophys Acta. 1991 Jan 8;1076(1):149–151. doi: 10.1016/0167-4838(91)90232-o. [DOI] [PubMed] [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES