Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Apr 1;331(Pt 1):245–249. doi: 10.1042/bj3310245

Anti-phospholamban and protein kinase A alter the Ca2+ sensitivity and maximum velocity of Ca2+ uptake by the cardiac sarcoplasmic reticulum.

M E Kargacin 1, Z Ali 1, G Kargacin 1
PMCID: PMC1219345  PMID: 9512486

Abstract

The activity of the SERCA2a Ca2+ pump in the sarcoplasmic reticulum (SR) of cardiac muscle is inhibited by phospholamban. When phospholamban is phosphorylated by cyclic-AMP-dependent protein kinase (PKA) this inhibition is relieved. It is generally agreed that this results in an increase in the Ca2+ sensitivity of the SR Ca2+ pump; however, some investigators have also reported an increase in the maximum velocity of the pump. We have used a sensitive fluorescence method to measure net Ca2+ uptake by native cardiac SR vesicles and compared the effects of a constitutively active subunit of PKA (cPKA) with those of a monoclonal antibody (A1) that binds to phospholamban and is thought to mimic the effect of phosphorylation. Both the Ca2+ sensitivity and the maximum velocity of uptake were increased by cPKA and by A1. The effects of cPKA and A1 on uptake velocity were only slightly additive. No changes in uptake were detected with denatured cPKA or denatured A1. These results indicate that the functional effect of phospholamban phosphorylation is to increase both the Ca2+ sensitivity and the maximum velocity of net Ca2+ uptake into the SR.

Full Text

The Full Text of this article is available as a PDF (255.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkin I. T., Adams P. D., MacKenzie K. R., Lemmon M. A., Brünger A. T., Engelman D. M. Structural organization of the pentameric transmembrane alpha-helices of phospholamban, a cardiac ion channel. EMBO J. 1994 Oct 17;13(20):4757–4764. doi: 10.1002/j.1460-2075.1994.tb06801.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arkin I. T., Rothman M., Ludlam C. F., Aimoto S., Engelman D. M., Rothschild K. J., Smith S. O. Structural model of the phospholamban ion channel complex in phospholipid membranes. J Mol Biol. 1995 May 12;248(4):824–834. doi: 10.1006/jmbi.1995.0263. [DOI] [PubMed] [Google Scholar]
  3. Burk S. E., Lytton J., MacLennan D. H., Shull G. E. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem. 1989 Nov 5;264(31):18561–18568. [PubMed] [Google Scholar]
  4. Cantilina T., Sagara Y., Inesi G., Jones L. R. Comparative studies of cardiac and skeletal sarcoplasmic reticulum ATPases. Effect of a phospholamban antibody on enzyme activation by Ca2+. J Biol Chem. 1993 Aug 15;268(23):17018–17025. [PubMed] [Google Scholar]
  5. Chamberlain B. K., Levitsky D. O., Fleischer S. Isolation and characterization of canine cardiac sarcoplasmic reticulum with improved Ca2+ transport properties. J Biol Chem. 1983 May 25;258(10):6602–6609. [PubMed] [Google Scholar]
  6. Chiesi M., Vorherr T., Falchetto R., Waelchli C., Carafoli E. Phospholamban is related to the autoinhibitory domain of the plasma membrane Ca(2+)-pumping ATPase. Biochemistry. 1991 Aug 13;30(32):7978–7983. doi: 10.1021/bi00246a015. [DOI] [PubMed] [Google Scholar]
  7. Colyer J. Control of the calcium pump of cardiac sarcoplasmic reticulum. A specific role for the pentameric structure of phospholamban? Cardiovasc Res. 1993 Oct;27(10):1766–1771. doi: 10.1093/cvr/27.10.1766. [DOI] [PubMed] [Google Scholar]
  8. Colyer J., Wang J. H. Dependence of cardiac sarcoplasmic reticulum calcium pump activity on the phosphorylation status of phospholamban. J Biol Chem. 1991 Sep 15;266(26):17486–17493. [PubMed] [Google Scholar]
  9. Decrouy A., Juteau M., Rousseau E. Examination of the role of phosphorylation and phospholamban in the regulation of the cardiac sarcoplasmic reticulum Cl- channel. J Membr Biol. 1995 Aug;146(3):315–326. doi: 10.1007/BF00233951. [DOI] [PubMed] [Google Scholar]
  10. Fabiato A. Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J Gen Physiol. 1981 Nov;78(5):457–497. doi: 10.1085/jgp.78.5.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harrer J. M., Kranias E. G. Characterization of the molecular form of cardiac phospholamban. Mol Cell Biochem. 1994 Nov 23;140(2):185–193. doi: 10.1007/BF00926757. [DOI] [PubMed] [Google Scholar]
  12. Hove-Madsen L., Bers D. M. Sarcoplasmic reticulum Ca2+ uptake and thapsigargin sensitivity in permeabilized rabbit and rat ventricular myocytes. Circ Res. 1993 Nov;73(5):820–828. doi: 10.1161/01.res.73.5.820. [DOI] [PubMed] [Google Scholar]
  13. Hughes G., Starling A. P., Sharma R. P., East J. M., Lee A. G. An investigation of the mechanism of inhibition of the Ca(2+)-ATPase by phospholamban. Biochem J. 1996 Sep 15;318(Pt 3):973–979. doi: 10.1042/bj3180973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jackson W. A., Colyer J. Translation of Ser16 and Thr17 phosphorylation of phospholamban into Ca 2+-pump stimulation. Biochem J. 1996 May 15;316(Pt 1):201–207. doi: 10.1042/bj3160201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. James P., Inui M., Tada M., Chiesi M., Carafoli E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature. 1989 Nov 2;342(6245):90–92. doi: 10.1038/342090a0. [DOI] [PubMed] [Google Scholar]
  16. Kargacin M. E., Kargacin G. J. Direct measurement of Ca2+ uptake and release by the sarcoplasmic reticulum of saponin permeabilized isolated smooth muscle cells. J Gen Physiol. 1995 Sep;106(3):467–484. doi: 10.1085/jgp.106.3.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kargacin M. E., Kargacin G. J. Methods for determining cardiac sarcoplasmic reticulum Ca2+ pump kinetics from fura 2 measurements. Am J Physiol. 1994 Oct;267(4 Pt 1):C1145–C1151. doi: 10.1152/ajpcell.1994.267.4.C1145. [DOI] [PubMed] [Google Scholar]
  18. Kargacin M. E., Kargacin G. J. The sarcoplasmic reticulum calcium pump is functionally altered in dystrophic muscle. Biochim Biophys Acta. 1996 May 21;1290(1):4–8. doi: 10.1016/0304-4165(95)00180-8. [DOI] [PubMed] [Google Scholar]
  19. Kargacin M. E., Scheid C. R., Honeyman T. W. Continuous monitoring of Ca2+ uptake in membrane vesicles with fura-2. Am J Physiol. 1988 Nov;255(5 Pt 1):C694–C698. doi: 10.1152/ajpcell.1988.255.5.C694. [DOI] [PubMed] [Google Scholar]
  20. Kim H. W., Steenaart N. A., Ferguson D. G., Kranias E. G. Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2(+)-ATPase with phospholamban in phospholipid vesicles. J Biol Chem. 1990 Jan 25;265(3):1702–1709. [PubMed] [Google Scholar]
  21. Kovacs R. J., Nelson M. T., Simmerman H. K., Jones L. R. Phospholamban forms Ca2+-selective channels in lipid bilayers. J Biol Chem. 1988 Dec 5;263(34):18364–18368. [PubMed] [Google Scholar]
  22. Le Peuch C. J., Le Peuch D. A., Demaille J. G. Phospholamban, activator of the cardiac sarcoplasmic reticulum calcium pump. Physicochemical properties and diagonal purification. Biochemistry. 1980 Jul 8;19(14):3368–3373. doi: 10.1021/bi00555a042. [DOI] [PubMed] [Google Scholar]
  23. Morris G. L., Cheng H. C., Colyer J., Wang J. H. Phospholamban regulation of cardiac sarcoplasmic reticulum (Ca(2+)-Mg2+)-ATPase. Mechanism of regulation and site of monoclonal antibody interaction. J Biol Chem. 1991 Jun 15;266(17):11270–11275. [PubMed] [Google Scholar]
  24. Odermatt A., Kurzydlowski K., MacLennan D. H. The vmax of the Ca2+-ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/calmodulin-dependent phosphorylation or by interaction with phospholamban. J Biol Chem. 1996 Jun 14;271(24):14206–14213. doi: 10.1074/jbc.271.24.14206. [DOI] [PubMed] [Google Scholar]
  25. Reddy L. G., Jones L. R., Cala S. E., O'Brian J. J., Tatulian S. A., Stokes D. L. Functional reconstitution of recombinant phospholamban with rabbit skeletal Ca(2+)-ATPase. J Biol Chem. 1995 Apr 21;270(16):9390–9397. doi: 10.1074/jbc.270.16.9390. [DOI] [PubMed] [Google Scholar]
  26. Reddy L. G., Jones L. R., Pace R. C., Stokes D. L. Purified, reconstituted cardiac Ca2+-ATPase is regulated by phospholamban but not by direct phosphorylation with Ca2+/calmodulin-dependent protein kinase. J Biol Chem. 1996 Jun 21;271(25):14964–14970. doi: 10.1074/jbc.271.25.14964. [DOI] [PubMed] [Google Scholar]
  27. Sasaki T., Inui M., Kimura Y., Kuzuya T., Tada M. Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase. J Biol Chem. 1992 Jan 25;267(3):1674–1679. [PubMed] [Google Scholar]
  28. Simmerman H. K., Collins J. H., Theibert J. L., Wegener A. D., Jones L. R. Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem. 1986 Oct 5;261(28):13333–13341. [PubMed] [Google Scholar]
  29. Starling A. P., Hughes G., Sharma R. P., East J. M., Lee A. G. The hydrophilic domain of phospholamban inhibits the Ca(2+)-ATPase--the importance of the method of assay. Biochem Biophys Res Commun. 1995 Oct 24;215(3):1067–1070. doi: 10.1006/bbrc.1995.2572. [DOI] [PubMed] [Google Scholar]
  30. Suzuki T., Wang J. H. Stimulation of bovine cardiac sarcoplasmic reticulum Ca2+ pump and blocking of phospholamban phosphorylation and dephosphorylation by a phospholamban monoclonal antibody. J Biol Chem. 1986 May 25;261(15):7018–7023. [PubMed] [Google Scholar]
  31. Tada M., Kadoma M. Regulation of the Ca2+ pump ATPase by cAMP-dependent phosphorylation of phospholamban. Bioessays. 1989 May;10(5):157–163. doi: 10.1002/bies.950100505. [DOI] [PubMed] [Google Scholar]
  32. Tada M., Katz A. M. Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Annu Rev Physiol. 1982;44:401–423. doi: 10.1146/annurev.ph.44.030182.002153. [DOI] [PubMed] [Google Scholar]
  33. Voss J., Jones L. R., Thomas D. D. The physical mechanism of calcium pump regulation in the heart. Biophys J. 1994 Jul;67(1):190–196. doi: 10.1016/S0006-3495(94)80469-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Williams D. A., Becker P. L., Fay F. S. Regional changes in calcium underlying contraction of single smooth muscle cells. Science. 1987 Mar 27;235(4796):1644–1648. doi: 10.1126/science.3103219. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES