Abstract
The steady-state level of alpha1(I) collagen mRNA is regulated by amino acid availability in human lung fibroblasts. Depletion of amino acids decreases alpha1(I) collagen mRNA levels and repletion of amino acids induces rapid re-expression of alpha1(I) mRNA. In these studies, we examined the requirements for individual amino acids on the regulation of alpha1(I) collagen mRNA. We found that re-expression of alpha1(I) collagen mRNA was critically dependent on cystine but not on other amino acids. However, the addition of cystine alone did not result in re-expression of alpha1(I) collagen mRNA. Following amino acid depletion, the addition of cystine with selective amino acids increased alpha1(I) collagen mRNA levels. The combination of glutamine and cystine increased alpha1(I) collagen mRNA levels 6.3-fold. Methionine or a branch-chain amino acid (leucine, isoleucine or valine) also acted in combination with cystine to increase alpha1(I) collagen mRNA expression, whereas other amino acids were not effective. The prolonged absence of cystine lowered steady-state levels of alpha1(I) collagen mRNA through a mechanism involving decreases in both the rate of gene transcription as assessed by nuclear run-on experiments and mRNA stability as assessed by half-life determination in the presence of actinomycin D. The effect of cystine was not mediated via alterations in the level of glutathione, the major redox buffer in cells, as determined by the addition of buthionine sulphoximine, an inhibitor of gamma-glutamylcysteine synthetase. These data suggest that cystine directly affects the regulation of alpha1(I) collagen mRNA.
Full Text
The Full Text of this article is available as a PDF (306.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akerboom T. P., Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol. 1981;77:373–382. doi: 10.1016/s0076-6879(81)77050-2. [DOI] [PubMed] [Google Scholar]
- Andrulis I. L., Hatfield G. W., Arfin S. M. Asparaginyl-tRNA aminoacylation levels and asparagine synthetase expression in cultured Chinese hamster ovary cells. J Biol Chem. 1979 Nov 10;254(21):10629–10633. [PMC free article] [PubMed] [Google Scholar]
- Bannai S., Sato H., Ishii T., Sugita Y. Induction of cystine transport activity in human fibroblasts by oxygen. J Biol Chem. 1989 Nov 5;264(31):18480–18484. [PubMed] [Google Scholar]
- Bannai S., Tateishi N. Role of membrane transport in metabolism and function of glutathione in mammals. J Membr Biol. 1986;89(1):1–8. doi: 10.1007/BF01870891. [DOI] [PubMed] [Google Scholar]
- Bannai S., Tsukeda H. The export of glutathione from human diploid cells in culture. J Biol Chem. 1979 May 10;254(9):3444–3450. [PubMed] [Google Scholar]
- Bellon G., Chaqour B., Wegrowski Y., Monboisse J. C., Borel J. P. Glutamine increases collagen gene transcription in cultured human fibroblasts. Biochim Biophys Acta. 1995 Sep 21;1268(3):311–323. doi: 10.1016/0167-4889(95)00093-8. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Christensen H. N. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev. 1990 Jan;70(1):43–77. doi: 10.1152/physrev.1990.70.1.43. [DOI] [PubMed] [Google Scholar]
- Engström W., Zetterberg A. The relationship between purines, pyrimidines, nucleosides, and glutamine for fibroblast cell proliferation. J Cell Physiol. 1984 Aug;120(2):233–241. doi: 10.1002/jcp.1041200218. [DOI] [PubMed] [Google Scholar]
- Franzén P., ten Dijke P., Ichijo H., Yamashita H., Schulz P., Heldin C. H., Miyazono K. Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor. Cell. 1993 Nov 19;75(4):681–692. doi: 10.1016/0092-8674(93)90489-d. [DOI] [PubMed] [Google Scholar]
- García-Martínez C., Llovera M., López-Soriano F. J., del Santo B., Argilés J. M. Lipopolysaccharide (LPS) increases the in vivo oxidation of branched-chain amino acids in the rat: a cytokine-mediated effect. Mol Cell Biochem. 1995 Jul 5;148(1):9–15. doi: 10.1007/BF00929497. [DOI] [PubMed] [Google Scholar]
- García-de-Lorenzo A., Ortíz-Leyba C., Planas M., Montejo J. C., Núez R., Ordóez F. J., Aragón C., Jiménez F. J. Parenteral administration of different amounts of branch-chain amino acids in septic patients: clinical and metabolic aspects. Crit Care Med. 1997 Mar;25(3):418–424. doi: 10.1097/00003246-199703000-00008. [DOI] [PubMed] [Google Scholar]
- Genovese C., Rowe D., Kream B. Construction of DNA sequences complementary to rat alpha 1 and alpha 2 collagen mRNA and their use in studying the regulation of type I collagen synthesis by 1,25-dihydroxyvitamin D. Biochemistry. 1984 Dec 4;23(25):6210–6216. doi: 10.1021/bi00320a049. [DOI] [PubMed] [Google Scholar]
- Goldstein R. H., Sakowski S., Meeker D., Franzblau C., Polgar P. The effect of prostaglandin E2 (PGE2) on amino acid uptake and protein formation by lung fibroblasts. J Biol Chem. 1986 Jul 5;261(19):8734–8737. [PubMed] [Google Scholar]
- Greenberg M. E., Ziff E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature. 1984 Oct 4;311(5985):433–438. doi: 10.1038/311433a0. [DOI] [PubMed] [Google Scholar]
- Griffith O. W., Meister A. Glutathione: interorgan translocation, turnover, and metabolism. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5606–5610. doi: 10.1073/pnas.76.11.5606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groudine M., Peretz M., Weintraub H. Transcriptional regulation of hemoglobin switching in chicken embryos. Mol Cell Biol. 1981 Mar;1(3):281–288. doi: 10.1128/mcb.1.3.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guidotti G. G., Borghetti A. F., Gazzola G. C. The regulation of amino acid transport in animal cells. Biochim Biophys Acta. 1978 Dec 15;515(4):329–366. doi: 10.1016/0304-4157(78)90009-6. [DOI] [PubMed] [Google Scholar]
- Hack V., Schmid D., Breitkreutz R., Stahl-Henning C., Drings P., Kinscherf R., Taut F., Holm E., Dröge W. Cystine levels, cystine flux, and protein catabolism in cancer cachexia, HIV/SIV infection, and senescence. FASEB J. 1997 Jan;11(1):84–92. doi: 10.1096/fasebj.11.1.9034170. [DOI] [PubMed] [Google Scholar]
- Humphries D. E., Silbert C. K., Silbert J. E. Sulphation by cultured cells. Cysteine, cysteinesulphinic acid and sulphite as sources for proteoglycan sulphate. Biochem J. 1988 May 15;252(1):305–308. doi: 10.1042/bj2520305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hwang C., Sinskey A. J., Lodish H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992 Sep 11;257(5076):1496–1502. doi: 10.1126/science.1523409. [DOI] [PubMed] [Google Scholar]
- Jones D. T., Reed R. R. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem. 1987 Oct 15;262(29):14241–14249. [PubMed] [Google Scholar]
- Krupsky M., Fine A., Berk J. L., Goldstein R. H. Retinoic acid-induced inhibition of type I collagen gene expression by human lung fibroblasts. Biochim Biophys Acta. 1994 Oct 18;1219(2):335–341. doi: 10.1016/0167-4781(94)90057-4. [DOI] [PubMed] [Google Scholar]
- Krupsky M., Fine A., Berk J. L., Goldstein R. H. The effect of retinoic acid on amino acid uptake and protein synthesis by lung fibroblasts. J Biol Chem. 1993 Nov 5;268(31):23283–23288. [PubMed] [Google Scholar]
- Krupsky M., Kuang P. P., Goldstein R. H. Regulation of type I collagen mRNA by amino acid deprivation in human lung fibroblasts. J Biol Chem. 1997 May 23;272(21):13864–13868. doi: 10.1074/jbc.272.21.13864. [DOI] [PubMed] [Google Scholar]
- Meister A., Anderson M. E. Glutathione. Annu Rev Biochem. 1983;52:711–760. doi: 10.1146/annurev.bi.52.070183.003431. [DOI] [PubMed] [Google Scholar]
- Meister A., Tate S. S. Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem. 1976;45:559–604. doi: 10.1146/annurev.bi.45.070176.003015. [DOI] [PubMed] [Google Scholar]
- Moore P. A., Jayme D. W., Oxender D. L. A role for aminoacyl-tRNA synthetases in the regulation of amino acid transport in mammalian cell lines. J Biol Chem. 1977 Nov 10;252(21):7427–7430. [PubMed] [Google Scholar]
- Mättä A., Ekholm E., Penttinen R. P. Effect of the 3'-untranslated region on the expression levels and mRNA stability of alpha 1(I) collagen gene. Biochim Biophys Acta. 1995 Feb 21;1260(3):294–300. doi: 10.1016/0167-4781(94)00207-j. [DOI] [PubMed] [Google Scholar]
- Mättä A., Penttinen R. P. A fibroblast protein binds the 3'-untranslated region of pro-alpha 1(I) collagen mRNA. Biochem J. 1993 Nov 1;295(Pt 3):691–698. doi: 10.1042/bj2950691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mättä A., Penttinen R. P. Nuclear and cytoplasmic alpha 1 (I) collagen mRNA-binding proteins. FEBS Lett. 1994 Feb 28;340(1-2):71–77. doi: 10.1016/0014-5793(94)80175-4. [DOI] [PubMed] [Google Scholar]
- O'Neill L., Holbrook N. J., Fargnoli J., Lakatta E. G. Progressive changes from young adult age to senescence in mRNA for rat cardiac myosin heavy chain genes. Cardioscience. 1991 Mar;2(1):1–5. [PubMed] [Google Scholar]
- Penttinen R. P., Kobayashi S., Bornstein P. Transforming growth factor beta increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1105–1108. doi: 10.1073/pnas.85.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pohjanpelto P., Hölttä E. Deprivation of a single amino acid induces protein synthesis-dependent increases in c-jun, c-myc, and ornithine decarboxylase mRNAs in Chinese hamster ovary cells. Mol Cell Biol. 1990 Nov;10(11):5814–5821. doi: 10.1128/mcb.10.11.5814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scornik O. A. Role of protein degradation in the regulation of cellular protein content and amino acid pools. Fed Proc. 1984 Apr;43(5):1283–1288. [PubMed] [Google Scholar]
- Slack J. L., Parker M. I., Robinson V. R., Bornstein P. Regulation of collagen I gene expression by ras. Mol Cell Biol. 1992 Oct;12(10):4714–4723. doi: 10.1128/mcb.12.10.4714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stamler J. S., Slivka A. Biological chemistry of thiols in the vasculature and in vascular-related disease. Nutr Rev. 1996 Jan;54(1 Pt 1):1–30. doi: 10.1111/j.1753-4887.1996.tb03770.x. [DOI] [PubMed] [Google Scholar]
- Stefanovic B., Hellerbrand C., Holcik M., Briendl M., Aliebhaber S., Brenner D. A. Posttranscriptional regulation of collagen alpha1(I) mRNA in hepatic stellate cells. Mol Cell Biol. 1997 Sep;17(9):5201–5209. doi: 10.1128/mcb.17.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas P. S. Hybridization of denatured RNA transferred or dotted nitrocellulose paper. Methods Enzymol. 1983;100:255–266. doi: 10.1016/0076-6879(83)00060-9. [DOI] [PubMed] [Google Scholar]
- Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
- Varga J., Yufit T., Brown R. R. Inhibition of collagenase and stromelysin gene expression by interferon-gamma in human dermal fibroblasts is mediated in part via induction of tryptophan degradation. J Clin Invest. 1995 Jul;96(1):475–481. doi: 10.1172/JCI118058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiner F. R., Czaja M. J., Jefferson D. M., Giambrone M. A., Tur-Kaspa R., Reid L. M., Zern M. A. The effects of dexamethasone on in vitro collagen gene expression. J Biol Chem. 1987 May 25;262(15):6955–6958. [PubMed] [Google Scholar]
- Yufit T., Vining V., Wang L., Brown R. R., Varga J. Inhibition of type I collagen mRNA expression independent of tryptophan depletion in interferon-gamma-treated human dermal fibroblasts. J Invest Dermatol. 1995 Sep;105(3):388–393. doi: 10.1111/1523-1747.ep12320990. [DOI] [PubMed] [Google Scholar]