Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Apr 15;331(Pt 2):431–436. doi: 10.1042/bj3310431

cADP-ribose formation by blood platelets is not responsible for intracellular calcium mobilization.

P Ohlmann 1, C Leray 1, C Ravanat 1, A Hallia 1, D Cassel 1, J P Cazenave 1, C Gachet 1
PMCID: PMC1219372  PMID: 9531481

Abstract

Human platelet CD38 is a multifunctional ectoenzyme catalysing the synthesis and hydrolysis of cADP-ribose (cADPR), a recently identified calcium-mobilizing agent that acts independently of D-myo-inositol 1,4,5-trisphosphate and is known to be expressed by human platelets. The present work shows that ADP-ribosyl cyclase activity is exclusively a membrane activity, of which the major part is located in plasma membranes and a small part in internal membranes. In broken cells, cyclase activity was insensitive to the presence of calcium and was not modulated by agonists such as thrombin or ADP, whereas in intact cells thrombin increased cADPR formation by 30%, an effect due to fusion of granules with the plasma membrane. In order to assess the role of cADPR as a calcium-mobilizing agent, vesicles were prepared from internal membranes and loaded with 45CaCl2. These vesicles were efficiently discharged by IP3 in a dose-dependent manner, but were not responsive to cADPR or ryanodine in the presence or absence of calmodulin. Thus cADPR is unlikely to play a role in intracellular calcium release in human blood platelets.

Full Text

The Full Text of this article is available as a PDF (359.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarhus R., Dickey D. M., Graeff R. M., Gee K. R., Walseth T. F., Lee H. C. Activation and inactivation of Ca2+ release by NAADP+. J Biol Chem. 1996 Apr 12;271(15):8513–8516. doi: 10.1074/jbc.271.15.8513. [DOI] [PubMed] [Google Scholar]
  2. Al-Mohanna F. A., Pettit E. J., Hallett M. B. Does actin polymerization status modulate Ca2+ storage in human neutrophils? Release and coalescence of Ca2+ stores by cytochalasins. Exp Cell Res. 1997 Aug 1;234(2):379–387. doi: 10.1006/excr.1997.3596. [DOI] [PubMed] [Google Scholar]
  3. Allen G. J., Muir S. R., Sanders D. Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science. 1995 May 5;268(5211):735–737. doi: 10.1126/science.7732384. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J. Cell signalling. A tale of two messengers. Nature. 1993 Sep 30;365(6445):388–389. doi: 10.1038/365388a0. [DOI] [PubMed] [Google Scholar]
  5. Brass L. F., Hoxie J. A., Manning D. R. Signaling through G proteins and G protein-coupled receptors during platelet activation. Thromb Haemost. 1993 Jul 1;70(1):217–223. [PubMed] [Google Scholar]
  6. Broekman M. J. Homogenization by nitrogen cavitation technique applied to platelet subcellular fractionation. Methods Enzymol. 1992;215:21–32. doi: 10.1016/0076-6879(92)15049-i. [DOI] [PubMed] [Google Scholar]
  7. Cazenave J. P., Hemmendinger S., Beretz A., Sutter-Bay A., Launay J. L'agrégation plaquettaire: outil d'investigation clinique et d'étude pharmacologique. Méthodologie. Ann Biol Clin (Paris) 1983;41(3):167–179. [PubMed] [Google Scholar]
  8. Daniel J. L., Dangelmaier C. A., Selak M., Smith J. B. ADP stimulates IP3 formation in human platelets. FEBS Lett. 1986 Oct 6;206(2):299–303. doi: 10.1016/0014-5793(86)81000-6. [DOI] [PubMed] [Google Scholar]
  9. Day H. J., Holmsen H., Hovig T. Subcellular particles of human platelets. A biochemical and electron microscopic study with particular reference to the influence of fractionation techniques. Scand J Haematol Suppl. 1969;7:3–35. [PubMed] [Google Scholar]
  10. Dianzani U., Funaro A., DiFranco D., Garbarino G., Bragardo M., Redoglia V., Buonfiglio D., De Monte L. B., Pileri A., Malavasi F. Interaction between endothelium and CD4+CD45RA+ lymphocytes. Role of the human CD38 molecule. J Immunol. 1994 Aug 1;153(3):952–959. [PubMed] [Google Scholar]
  11. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  12. Fauvel J., Chap H., Roques V., Levy-Toledano S., Douste-Blazy L. Biochemical characterization of plasma membranes and intracellular membranes isolated from human platelets using Percoll gradients. Biochim Biophys Acta. 1986 Mar 27;856(1):155–164. doi: 10.1016/0005-2736(86)90022-2. [DOI] [PubMed] [Google Scholar]
  13. Gachet C., Hechler B., Léon C., Vial C., Leray C., Ohlmann P., Cazenave J. P. Activation of ADP receptors and platelet function. Thromb Haemost. 1997 Jul;78(1):271–275. [PubMed] [Google Scholar]
  14. Galione A. Cyclic ADP-ribose: a new way to control calcium. Science. 1993 Jan 15;259(5093):325–326. doi: 10.1126/science.8380506. [DOI] [PubMed] [Google Scholar]
  15. Gerasimenko O. V., Gerasimenko J. V., Tepikin A. V., Petersen O. H. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell. 1995 Feb 10;80(3):439–444. doi: 10.1016/0092-8674(95)90494-8. [DOI] [PubMed] [Google Scholar]
  16. Graeff R. M., Podein R. J., Aarhus R., Lee H. C. Magnesium ions but not ATP inhibit cyclic ADP-ribose-induced calcium release. Biochem Biophys Res Commun. 1995 Jan 17;206(2):786–791. doi: 10.1006/bbrc.1995.1111. [DOI] [PubMed] [Google Scholar]
  17. Graeff R. M., Walseth T. F., Fryxell K., Branton W. D., Lee H. C. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem. 1994 Dec 2;269(48):30260–30267. [PubMed] [Google Scholar]
  18. Gromada J., Jørgensen T. D., Dissing S. Cyclic ADP-ribose and inositol 1,4,5-triphosphate mobilizes Ca2+ from distinct intracellular pools in permeabilized lacrimal acinar cells. FEBS Lett. 1995 Mar 6;360(3):303–306. doi: 10.1016/0014-5793(95)00131-r. [DOI] [PubMed] [Google Scholar]
  19. Lee H. C., Aarhus R., Graeff R. M. Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J Biol Chem. 1995 Apr 21;270(16):9060–9066. doi: 10.1074/jbc.270.16.9060. [DOI] [PubMed] [Google Scholar]
  20. Lee H. C., Aarhus R., Graeff R., Gurnack M. E., Walseth T. F. Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature. 1994 Jul 28;370(6487):307–309. doi: 10.1038/370307a0. [DOI] [PubMed] [Google Scholar]
  21. Lee H. C. Cyclic ADP-ribose: a calcium mobilizing metabolite of NAD+. Mol Cell Biochem. 1994 Sep;138(1-2):229–235. doi: 10.1007/BF00928466. [DOI] [PubMed] [Google Scholar]
  22. Lee H. C., Graeff R. M., Walseth T. F. ADP-ribosyl cyclase and CD38. Multi-functional enzymes in Ca+2 signaling. Adv Exp Med Biol. 1997;419:411–419. [PubMed] [Google Scholar]
  23. Mattie M., Brooker G., Spiegel S. Sphingosine-1-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphate-independent pathway. J Biol Chem. 1994 Feb 4;269(5):3181–3188. [PubMed] [Google Scholar]
  24. Mehta K., Shahid U., Malavasi F. Human CD38, a cell-surface protein with multiple functions. FASEB J. 1996 Oct;10(12):1408–1417. doi: 10.1096/fasebj.10.12.8903511. [DOI] [PubMed] [Google Scholar]
  25. Meldolesi J., Madeddu L., Pozzan T. Intracellular Ca2+ storage organelles in non-muscle cells: heterogeneity and functional assignment. Biochim Biophys Acta. 1990 Nov 12;1055(2):130–140. doi: 10.1016/0167-4889(90)90113-r. [DOI] [PubMed] [Google Scholar]
  26. Mészáros L. G., Bak J., Chu A. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature. 1993 Jul 1;364(6432):76–79. doi: 10.1038/364076a0. [DOI] [PubMed] [Google Scholar]
  27. Nichols B. A., Setzer P. Y., Bainton D. F. Glucose-6-phosphatase as a cytochemical marker of endoplasmic reticulum in human leukocytes and platelets. J Histochem Cytochem. 1984 Feb;32(2):165–171. doi: 10.1177/32.2.6319482. [DOI] [PubMed] [Google Scholar]
  28. O'Rourke F., Matthews E., Feinstein M. B. Isolation of InsP4 and InsP6 binding proteins from human platelets: InsP4 promotes Ca2+ efflux from inside-out plasma membrane vesicles containing 104 kDa GAP1IP4BP protein. Biochem J. 1996 May 1;315(Pt 3):1027–1034. doi: 10.1042/bj3151027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. O'Rourke F., Zavoico G. B., Feinstein M. B. Release of Ca2+ by inositol 1,4,5-trisphosphate in platelet membrane vesicles is not dependent on cyclic AMP-dependent protein kinase. Biochem J. 1989 Feb 1;257(3):715–721. doi: 10.1042/bj2570715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Offermanns S., Toombs C. F., Hu Y. H., Simon M. I. Defective platelet activation in G alpha(q)-deficient mice. Nature. 1997 Sep 11;389(6647):183–186. doi: 10.1038/38284. [DOI] [PubMed] [Google Scholar]
  31. Packham M. A., Livne A. A., Ruben D. H., Rand M. L. Activation of phospholipase C and protein kinase C has little involvement in ADP-induced primary aggregation of human platelets: effects of diacylglycerols, the diacylglycerols, the diacylglycerol kinase inhibitor R59022, staurosporine and okadaic acid. Biochem J. 1993 Mar 15;290(Pt 3):849–856. doi: 10.1042/bj2900849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Raha S., Jones G. D., Gear A. R. Sub-second oscillations of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate during platelet activation by ADP and thrombin: lack of correlation with calcium kinetics. Biochem J. 1993 Jun 15;292(Pt 3):643–646. doi: 10.1042/bj2920643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ramaschi G., Torti M., Festetics E. T., Sinigaglia F., Malavasi F., Balduini C. Expression of cyclic ADP-ribose-synthetizing CD38 molecule on human platelet membrane. Blood. 1996 Mar 15;87(6):2308–2313. [PubMed] [Google Scholar]
  34. Record M., Bes J. C., Chap H., Douste-Blazy L. Isolation and characterization of plasma membranes from krebs II ascite cells using Percoll gradient. Biochim Biophys Acta. 1982 May 21;688(1):57–65. doi: 10.1016/0005-2736(82)90578-8. [DOI] [PubMed] [Google Scholar]
  35. Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
  36. Shatrov V. A., Lehmann V., Chouaib S. Sphingosine-1-phosphate mobilizes intracellular calcium and activates transcription factor NF-kappa B in U937 cells. Biochem Biophys Res Commun. 1997 May 8;234(1):121–124. doi: 10.1006/bbrc.1997.6598. [DOI] [PubMed] [Google Scholar]
  37. Sitsapesan R., McGarry S. J., Williams A. J. Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release. Trends Pharmacol Sci. 1995 Nov;16(11):386–391. doi: 10.1016/s0165-6147(00)89080-x. [DOI] [PubMed] [Google Scholar]
  38. Vickers J. D., Kinlough-Rathbone R. L., Packham M. A., Mustard J. F. Inositol phospholipid metabolism in human platelets stimulated by ADP. Eur J Biochem. 1990 Oct 24;193(2):521–528. doi: 10.1111/j.1432-1033.1990.tb19367.x. [DOI] [PubMed] [Google Scholar]
  39. Yatomi Y., Ruan F., Hakomori S., Igarashi Y. Sphingosine-1-phosphate: a platelet-activating sphingolipid released from agonist-stimulated human platelets. Blood. 1995 Jul 1;86(1):193–202. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES