Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Apr 15;331(Pt 2):483–488. doi: 10.1042/bj3310483

Triplet structure of human von Willebrand factor.

B E Fischer 1, K B Thomas 1, U Schlokat 1, F Dorner 1
PMCID: PMC1219379  PMID: 9531488

Abstract

Human von Willebrand factor (hp-vWF) is a high-molecular- mass protein found in plasma as a series of multimers. It consists of subunits comprising 2050 amino acids linked by disulphide bonds into multimers of various size ranging in molecular mass up to greater than 10000kDa. Partial proteolysis at position Tyr842-Mer843 of the subunit [Dent et al. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 6306-6310] by a vWF-specific protease [Furlan et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 7503-7507] results in the generation of an N-terminal and a C-terminal fragment and the appearance of hp-vWF triplet bands. It has been suggested [Furlan et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 7503-7507] that (i) the intermediate triplet band of the primary dimer represents a dimer of two C-terminal fragments, (ii) the slower migrating satellite band of the primary dimer represents an asymmetric structure composed of a mature subunit to which one N-terminal and one C-terminal fragment are linked by disulphide bonds, and (iii) the faster migrating satellite band of the primary dimer contains two N-terminal fragments. Here we used recombinant vWF (r-vWF) for structural analysis of hp-vWF multimers. r-vWF exhibited no proteolytic degradation and all multimers contained mature subunits. High-resolution agarose-gel electrophoresis and two-dimensional electrophoresis demonstrated that (i) r-vWF multimers and hp-vWF intermediate triplet bands exhibited identical molecular mass and electrophoretic mobilities, (ii) the faster and slower migrating satellite bands of hp-vWF differ by less than the molecular mass of one subunit from the corresponding intermediate triplet band, and (iii) the triplet bands of hp-vWF are composed of mature and degraded subunits. The results support a structural model of hp-vWF triplet bands according to which the intermediate triplet bands represent multiple numbers of symmetric and/or asymmetric dimers, the slower migrating satellite bands have one extra N-terminal fragment, and the faster migrating satellite band lacks one N-terminal fragment respectively in comparison with the corresponding intermediate triplet band.

Full Text

The Full Text of this article is available as a PDF (288.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aihara M., Sawada Y., Ueno K., Morimoto S., Yoshida Y., de Serres M., Cooper H. A., Wagner R. H. Visualization of von Willebrand factor multimers by immunoenzymatic stain using avidin-biotin peroxidase complex. Thromb Haemost. 1986 Apr 30;55(2):263–267. [PubMed] [Google Scholar]
  2. Dent J. A., Berkowitz S. D., Ware J., Kasper C. K., Ruggeri Z. M. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6306–6310. doi: 10.1073/pnas.87.16.6306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dent J. A., Galbusera M., Ruggeri Z. M. Heterogeneity of plasma von Willebrand factor multimers resulting from proteolysis of the constituent subunit. J Clin Invest. 1991 Sep;88(3):774–782. doi: 10.1172/JCI115376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fischer B. E., Kramer G., Mitterer A., Grillberger L., Reiter M., Mundt W., Dorner F., Eibl J. Effect of multimerization of human and recombinant von Willebrand factor on platelet aggregation, binding to collagen and binding of coagulation factor VIII. Thromb Res. 1996 Oct 1;84(1):55–66. doi: 10.1016/0049-3848(96)00161-2. [DOI] [PubMed] [Google Scholar]
  5. Fischer B. E., Schlokat U., Mitterer A., Reiter M., Mundt W., Turecek P. L., Schwarz H. P., Dorner F. Structural analysis of recombinant von Willebrand factor produced at industrial scale fermentation of transformed CHO cells co-expressing recombinant furin. FEBS Lett. 1995 Nov 20;375(3):259–262. doi: 10.1016/0014-5793(95)01218-4. [DOI] [PubMed] [Google Scholar]
  6. Furlan M., Robles R., Affolter D., Meyer D., Baillod P., Lämmle B. Triplet structure of von Willebrand factor reflects proteolytic degradation of high molecular weight multimers. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7503–7507. doi: 10.1073/pnas.90.16.7503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Furlan M., Robles R., Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood. 1996 May 15;87(10):4223–4234. [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Mannucci P. M., Abildgaard C. F., Gralnick H. R., Hill F. G., Hoyer L. W., Lombardi R., Nilsson I. M., Tuddenham E., Meyer D. Multicenter comparison of von Willebrand factor multimer sizing techniques. Report of the Factor VIII and von Willebrand Factor Subcommittee. Thromb Haemost. 1985 Dec 17;54(4):873–876. [PubMed] [Google Scholar]
  10. Mannuccio P. M., Lattuada A., Ruggeri Z. M. Proteolysis of von Willebrand factor in therapeutic plasma concentrates. Blood. 1994 May 15;83(10):3018–3027. [PubMed] [Google Scholar]
  11. Pannekoek H., Voorberg J. Molecular cloning, expression and assembly of multimeric von Willebrand factor. Baillieres Clin Haematol. 1989 Oct;2(4):879–896. doi: 10.1016/s0950-3536(89)80050-2. [DOI] [PubMed] [Google Scholar]
  12. Raines G., Aumann H., Sykes S., Street A. Multimeric analysis of von Willebrand factor by molecular sieving electrophoresis in sodium dodecyl sulphate agarose gel. Thromb Res. 1990 Nov 1;60(3):201–212. doi: 10.1016/0049-3848(90)90181-b. [DOI] [PubMed] [Google Scholar]
  13. Ruggeri Z. M., Ware J. The structure and function of von Willebrand factor. Thromb Haemost. 1992 Jun 1;67(6):594–599. [PubMed] [Google Scholar]
  14. Ruggeri Z. M., Ware J. von Willebrand factor. FASEB J. 1993 Feb 1;7(2):308–316. doi: 10.1096/fasebj.7.2.8440408. [DOI] [PubMed] [Google Scholar]
  15. Ruggeri Z. M., Zimmerman T. S. The complex multimeric composition of factor VIII/von Willebrand factor. Blood. 1981 Jun;57(6):1140–1143. [PubMed] [Google Scholar]
  16. Scott J. P., Montgomery R. R. Therapy of von Willebrand disease. Semin Thromb Hemost. 1993;19(1):37–47. doi: 10.1055/s-2007-994004. [DOI] [PubMed] [Google Scholar]
  17. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  18. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  20. Zimmerman T. S., Dent J. A., Ruggeri Z. M., Nannini L. H. Subunit composition of plasma von Willebrand factor. Cleavage is present in normal individuals, increased in IIA and IIB von Willebrand disease, but minimal in variants with aberrant structure of individual oligomers (types IIC, IID, and IIE). J Clin Invest. 1986 Mar;77(3):947–951. doi: 10.1172/JCI112394. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES