Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Apr 15;331(Pt 2):489–495. doi: 10.1042/bj3310489

Inhibition of kinases impairs neutrophil activation and killing of Staphylococcus aureus.

B Schnyder 1, P C Meunier 1, B D Car 1
PMCID: PMC1219380  PMID: 9531489

Abstract

Intracellular phosphorylations polymorphonuclear neutrophils are mediated by kinases, including mitogen activated-protein (MAP) kinases and phosphatidylinositol 3-kinase. In the present study we demonstrate their effector functions upon both ligation of cell-surface seven-transmembrane-spanning receptors by bacterial peptide formylmethionyl-leucylphenylalanine as well as in the process of destruction of Staphylococcus aureus. To regulate neutrophil MAP kinases p38 and p44/42, specifically, we made use of their specific inhibitors 10 microM SK&F 86002 (for p38) and PD 098059 (for activating kinase of p44/42). SK&F 86002 was a potent inhibitor (by 70%) of induced antimicrobial oxygen-radical generation compared with PD 098059 (by 20%). SK&F 86002 and PD 098059 inhibited mobilization of a dominant neutrophil adhesion molecule, beta2 integrin, from cytoplasmic granules to the plasma membrane by 40 and 10% respectively, and the combination of the two drugs resulted in a 90% effect. The combined effect of both drugs was moderate inhibition of bacterial destruction, despite the fact that neither compound had detectable effect on bactericidal activity if applied individually. Bacterial destruction was also inhibited by wortmannin (0.1 microM), the specific inhibitor of phosphatidylinositol 3-kinase, which had previously been described to target various other activations of the neutrophil, including oxygen-radical generation. Although the relative contribution of p38 and p44/42 MAP kinases varied, the marked effects of the combined inhibition of the kinases revealed their concerted actions to be critical for normal neutrophil function.

Full Text

The Full Text of this article is available as a PDF (524.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki N., Johnson M. T., Swanson J. A. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. J Cell Biol. 1996 Dec;135(5):1249–1260. doi: 10.1083/jcb.135.5.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baggiolini M., Dewald B., Schnyder J., Ruch W., Cooper P. H., Payne T. G. Inhibition of the phagocytosis-induced respiratory burst by the fungal metabolite wortmannin and some analogues. Exp Cell Res. 1987 Apr;169(2):408–418. doi: 10.1016/0014-4827(87)90201-1. [DOI] [PubMed] [Google Scholar]
  3. Brunet A., Pouysségur J. Identification of MAP kinase domains by redirecting stress signals into growth factor responses. Science. 1996 Jun 14;272(5268):1652–1655. doi: 10.1126/science.272.5268.1652. [DOI] [PubMed] [Google Scholar]
  4. Clark-Lewis I., Sanghera J. S., Pelech S. L. Definition of a consensus sequence for peptide substrate recognition by p44mpk, the meiosis-activated myelin basic protein kinase. J Biol Chem. 1991 Aug 15;266(23):15180–15184. [PubMed] [Google Scholar]
  5. Clifford C. B., Slauson D. O., Neilsen N. R., Suyemoto M. M., Zwahlen R. D., Schlafer D. H. Ontogeny of inflammatory cell responsiveness: superoxide anion generation by phorbol ester-stimulated fetal, neonatal, and adult bovine neutrophils. Inflammation. 1989 Apr;13(2):221–231. doi: 10.1007/BF00924792. [DOI] [PubMed] [Google Scholar]
  6. Cobb M. H., Goldsmith E. J. How MAP kinases are regulated. J Biol Chem. 1995 Jun 23;270(25):14843–14846. doi: 10.1074/jbc.270.25.14843. [DOI] [PubMed] [Google Scholar]
  7. Dewald B., Thelen M., Baggiolini M. Two transduction sequences are necessary for neutrophil activation by receptor agonists. J Biol Chem. 1988 Nov 5;263(31):16179–16184. [PubMed] [Google Scholar]
  8. Doherty J. B., Shah S. K., Finke P. E., Dorn C. P., Jr, Hagmann W. K., Hale J. J., Kissinger A. L., Thompson K. R., Brause K., Chandler G. O. Chemical, biochemical, pharmacokinetic, and biological properties of L-680,833: a potent, orally active monocyclic beta-lactam inhibitor of human polymorphonuclear leukocyte elastase. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8727–8731. doi: 10.1073/pnas.90.18.8727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Downey G. P., Butler J. R., Brumell J., Borregaard N., Kjeldsen L., Sue-A-Quan A. K., Grinstein S. Chemotactic peptide-induced activation of MEK-2, the predominant isoform in human neutrophils. Inhibition by wortmannin. J Biol Chem. 1996 Aug 30;271(35):21005–21011. doi: 10.1074/jbc.271.35.21005. [DOI] [PubMed] [Google Scholar]
  10. Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7686–7689. doi: 10.1073/pnas.92.17.7686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edwards S. W., Watson F. The cell biology of phagocytes. Immunol Today. 1995 Nov;16(11):508–510. doi: 10.1016/0167-5699(95)80041-7. [DOI] [PubMed] [Google Scholar]
  12. El Benna J., Faust R. P., Johnson J. L., Babior B. M. Phosphorylation of the respiratory burst oxidase subunit p47phox as determined by two-dimensional phosphopeptide mapping. Phosphorylation by protein kinase C, protein kinase A, and a mitogen-activated protein kinase. J Biol Chem. 1996 Mar 15;271(11):6374–6378. doi: 10.1074/jbc.271.11.6374. [DOI] [PubMed] [Google Scholar]
  13. Ferrante A., Martin A. J., Bates E. J., Goh D. H., Harvey D. P., Parsons D., Rathjen D. A., Russ G., Dayer J. M. Killing of Staphylococcus aureus by tumor necrosis factor-alpha-activated neutrophils. The role of serum opsonins, integrin receptors, respiratory burst, and degranulation. J Immunol. 1993 Nov 1;151(9):4821–4828. [PubMed] [Google Scholar]
  14. Fuortes M., Jin W. W., Nathan C. Adhesion-dependent protein tyrosine phosphorylation in neutrophils treated with tumor necrosis factor. J Cell Biol. 1993 Feb;120(3):777–784. doi: 10.1083/jcb.120.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grinstein S., Furuya W. Chemoattractant-induced tyrosine phosphorylation and activation of microtubule-associated protein kinase in human neutrophils. J Biol Chem. 1992 Sep 5;267(25):18122–18125. [PubMed] [Google Scholar]
  16. Ireton K., Payrastre B., Chap H., Ogawa W., Sakaue H., Kasuga M., Cossart P. A role for phosphoinositide 3-kinase in bacterial invasion. Science. 1996 Nov 1;274(5288):780–782. doi: 10.1126/science.274.5288.780. [DOI] [PubMed] [Google Scholar]
  17. Jackson S. H., Gallin J. I., Holland S. M. The p47phox mouse knock-out model of chronic granulomatous disease. J Exp Med. 1995 Sep 1;182(3):751–758. doi: 10.1084/jem.182.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Knall C., Worthen G. S., Johnson G. L. Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3052–3057. doi: 10.1073/pnas.94.7.3052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Knall C., Young S., Nick J. A., Buhl A. M., Worthen G. S., Johnson G. L. Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J Biol Chem. 1996 Feb 2;271(5):2832–2838. doi: 10.1074/jbc.271.5.2832. [DOI] [PubMed] [Google Scholar]
  20. Kumar S., McLaughlin M. M., McDonnell P. C., Lee J. C., Livi G. P., Young P. R. Human mitogen-activated protein kinase CSBP1, but not CSBP2, complements a hog1 deletion in yeast. J Biol Chem. 1995 Dec 8;270(49):29043–29046. doi: 10.1074/jbc.270.49.29043. [DOI] [PubMed] [Google Scholar]
  21. Lee J. C., Badger A. M., Griswold D. E., Dunnington D., Truneh A., Votta B., White J. R., Young P. R., Bender P. E. Bicyclic imidazoles as a novel class of cytokine biosynthesis inhibitors. Ann N Y Acad Sci. 1993 Nov 30;696:149–170. doi: 10.1111/j.1749-6632.1993.tb17149.x. [DOI] [PubMed] [Google Scholar]
  22. Lee J. C., Laydon J. T., McDonnell P. C., Gallagher T. F., Kumar S., Green D., McNulty D., Blumenthal M. J., Heys J. R., Landvatter S. W. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994 Dec 22;372(6508):739–746. doi: 10.1038/372739a0. [DOI] [PubMed] [Google Scholar]
  23. Lenormand P., Sardet C., Pagès G., L'Allemain G., Brunet A., Pouysségur J. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol. 1993 Sep;122(5):1079–1088. doi: 10.1083/jcb.122.5.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liles W. C., Ledbetter J. A., Waltersdorph A. W., Klebanoff S. J. Cross-linking of CD18 primes human neutrophils for activation of the respiratory burst in response to specific stimuli: implications for adhesion-dependent physiological responses in neutrophils. J Leukoc Biol. 1995 Dec;58(6):690–697. doi: 10.1002/jlb.58.6.690. [DOI] [PubMed] [Google Scholar]
  25. Lu H., Smith C. W., Perrard J., Bullard D., Tang L., Shappell S. B., Entman M. L., Beaudet A. L., Ballantyne C. M. LFA-1 is sufficient in mediating neutrophil emigration in Mac-1-deficient mice. J Clin Invest. 1997 Mar 15;99(6):1340–1350. doi: 10.1172/JCI119293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Luscinskas F. W., Kansas G. S., Ding H., Pizcueta P., Schleiffenbaum B. E., Tedder T. F., Gimbrone M. A., Jr Monocyte rolling, arrest and spreading on IL-4-activated vascular endothelium under flow is mediated via sequential action of L-selectin, beta 1-integrins, and beta 2-integrins. J Cell Biol. 1994 Jun;125(6):1417–1427. doi: 10.1083/jcb.125.6.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maulik N., Watanabe M., Zu Y. L., Huang C. K., Cordis G. A., Schley J. A., Das D. K. Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett. 1996 Nov 4;396(2-3):233–237. doi: 10.1016/0014-5793(96)01109-x. [DOI] [PubMed] [Google Scholar]
  28. Nahas N., Molski T. F., Fernandez G. A., Sha'afi R. I. Tyrosine phosphorylation and activation of a new mitogen-activated protein (MAP)-kinase cascade in human neutrophils stimulated with various agonists. Biochem J. 1996 Aug 15;318(Pt 1):247–253. doi: 10.1042/bj3180247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nick J. A., Avdi N. J., Young S. K., Knall C., Gerwins P., Johnson G. L., Worthen G. S. Common and distinct intracellular signaling pathways in human neutrophils utilized by platelet activating factor and FMLP. J Clin Invest. 1997 Mar 1;99(5):975–986. doi: 10.1172/JCI119263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pawlotsky J. M., Roudot-Thoraval F., Bastie A., Darthuy F., Rémiré J., Métreau J. M., Zafrani E. S., Duval J., Dhumeaux D. Factors affecting treatment responses to interferon-alpha in chronic hepatitis C. J Infect Dis. 1996 Jul;174(1):1–7. doi: 10.1093/infdis/174.1.1. [DOI] [PubMed] [Google Scholar]
  31. Raingeaud J., Gupta S., Rogers J. S., Dickens M., Han J., Ulevitch R. J., Davis R. J. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 1995 Mar 31;270(13):7420–7426. doi: 10.1074/jbc.270.13.7420. [DOI] [PubMed] [Google Scholar]
  32. Read M. A., Whitley M. Z., Gupta S., Pierce J. W., Best J., Davis R. J., Collins T. Tumor necrosis factor alpha-induced E-selectin expression is activated by the nuclear factor-kappaB and c-JUN N-terminal kinase/p38 mitogen-activated protein kinase pathways. J Biol Chem. 1997 Jan 31;272(5):2753–2761. doi: 10.1074/jbc.272.5.2753. [DOI] [PubMed] [Google Scholar]
  33. Schnyder B., Lahm H., Woerly G., Odartchenko N., Ryffel B., Car B. D. Growth inhibition signalled through the interleukin-4/interleukin-13 receptor complex is associated with tyrosine phosphorylation of insulin receptor substrate-1. Biochem J. 1996 May 1;315(Pt 3):767–774. doi: 10.1042/bj3150767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schnyder B., Lugli S., Feng N., Etter H., Lutz R. A., Ryffel B., Sugamura K., Wunderli-Allenspach H., Moser R. Interleukin-4 (IL-4) and IL-13 bind to a shared heterodimeric complex on endothelial cells mediating vascular cell adhesion molecule-1 induction in the absence of the common gamma chain. Blood. 1996 May 15;87(10):4286–4295. [PubMed] [Google Scholar]
  35. Sengeløv H., Kjeldsen L., Diamond M. S., Springer T. A., Borregaard N. Subcellular localization and dynamics of Mac-1 (alpha m beta 2) in human neutrophils. J Clin Invest. 1993 Sep;92(3):1467–1476. doi: 10.1172/JCI116724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thelen M., Uguccioni M., Bösiger J. PI 3-kinase-dependent and independent chemotaxis of human neutrophil leukocytes. Biochem Biophys Res Commun. 1995 Dec 26;217(3):1255–1262. doi: 10.1006/bbrc.1995.2903. [DOI] [PubMed] [Google Scholar]
  37. Thelen M., Wymann M. P., Langen H. Wortmannin binds specifically to 1-phosphatidylinositol 3-kinase while inhibiting guanine nucleotide-binding protein-coupled receptor signaling in neutrophil leukocytes. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4960–4964. doi: 10.1073/pnas.91.11.4960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Torres M., Hall F. L., O'Neill K. Stimulation of human neutrophils with formyl-methionyl-leucyl-phenylalanine induces tyrosine phosphorylation and activation of two distinct mitogen-activated protein-kinases. J Immunol. 1993 Feb 15;150(4):1563–1577. [PubMed] [Google Scholar]
  39. Trotta R., Kanakaraj P., Perussia B. Fc gamma R-dependent mitogen-activated protein kinase activation in leukocytes: a common signal transduction event necessary for expression of TNF-alpha and early activation genes. J Exp Med. 1996 Sep 1;184(3):1027–1035. doi: 10.1084/jem.184.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Trotta R., Kanakaraj P., Perussia B. Fc gamma R-dependent mitogen-activated protein kinase activation in leukocytes: a common signal transduction event necessary for expression of TNF-alpha and early activation genes. J Exp Med. 1996 Sep 1;184(3):1027–1035. doi: 10.1084/jem.184.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wang X. Z., Ron D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science. 1996 May 31;272(5266):1347–1349. doi: 10.1126/science.272.5266.1347. [DOI] [PubMed] [Google Scholar]
  42. Xia Z., Dickens M., Raingeaud J., Davis R. J., Greenberg M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995 Nov 24;270(5240):1326–1331. doi: 10.1126/science.270.5240.1326. [DOI] [PubMed] [Google Scholar]
  43. Young P. R., McLaughlin M. M., Kumar S., Kassis S., Doyle M. L., McNulty D., Gallagher T. F., Fisher S., McDonnell P. C., Carr S. A. Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. J Biol Chem. 1997 May 2;272(18):12116–12121. doi: 10.1074/jbc.272.18.12116. [DOI] [PubMed] [Google Scholar]
  44. Zhang J., Zhang J., Shattil S. J., Cunningham M. C., Rittenhouse S. E. Phosphoinositide 3-kinase gamma and p85/phosphoinositide 3-kinase in platelets. Relative activation by thrombin receptor or beta-phorbol myristate acetate and roles in promoting the ligand-binding function of alphaIIbbeta3 integrin. J Biol Chem. 1996 Mar 15;271(11):6265–6272. doi: 10.1074/jbc.271.11.6265. [DOI] [PubMed] [Google Scholar]
  45. Zhang L., Plow E. F. A discrete site modulates activation of I domains. Application to integrin alphaMbeta2. J Biol Chem. 1996 Nov 22;271(47):29953–29957. doi: 10.1074/jbc.271.47.29953. [DOI] [PubMed] [Google Scholar]
  46. Zhou M. J., Brown E. J. CR3 (Mac-1, alpha M beta 2, CD11b/CD18) and Fc gamma RIII cooperate in generation of a neutrophil respiratory burst: requirement for Fc gamma RIII and tyrosine phosphorylation. J Cell Biol. 1994 Jun;125(6):1407–1416. doi: 10.1083/jcb.125.6.1407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zu Y. L., Ai Y., Gilchrist A., Labadia M. E., Sha'afi R. I., Huang C. K. Activation of MAP kinase-activated protein kinase 2 in human neutrophils after phorbol ester or fMLP peptide stimulation. Blood. 1996 Jun 15;87(12):5287–5296. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES