Abstract
N-Terminal signal peptides direct secretory and most membrane proteins into the exocytic pathway at the endoplasmic reticulum. Signal sequences can function across kingdoms. However, our attempts at translocating variant surface glycoprotein (VSG) 117, VSG MVAT7, VSG 221 and BiP from Trypanosoma brucei and gp63 from Leishmania chagasi into canine pancreas microsomes failed. On replacing the signal peptide of VSG 117 with that from yeast prepro-alpha-mating factor (ppalphaMF) the chimaeric protein was imported, indicating that the signal sequence of VSG 117 was incompatible with the protein-import machinery of mammalian microsomes. Replacement of the gp63-h-region with a hybrid composed of the N-terminal nine residues from the h-region of gp67 from Autographa californica nuclear polyhedrosis virus and the C-terminal 10 residues from the h-region of gp63 from L. major produced a functional signal peptide. Thus, the h-region of kinetoplastid signal peptides appears to be the subdomain that is non-functional at the mammalian translocon. The calculated biophysical properties and computed discriminant scores (predictive of importability of signal peptides into mammalian microsomes) of the kinetoplastid signal sequences nevertheless are similar to those of ppalphaMF and Escherichia coli beta-lactamase both of which were imported. These signal peptides are the first collection from one biological family that have been found to fail to function across a species barrier. They indicate that signal peptides are not as universally interchangeable as previously believed. Intriguingly, endoplasmic reticulum signal peptides from Leishmania and Crithidia fasciculata are reminiscent of signal peptides from Gram-positive bacteria.
Full Text
The Full Text of this article is available as a PDF (387.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Qahtani A., Mensa-Wilmot K. A 5' untranslated region which directs accurate and robust translation by prokaryotic and mammalian ribosomes. Nucleic Acids Res. 1996 Mar 15;24(6):1173–1174. doi: 10.1093/nar/24.6.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen G., Gurnett L. P., Cross G. A. Complete amino acids sequence of a variant surface glycoprotein (VSG 117) from Trypanosoma brucei. J Mol Biol. 1982 May 25;157(3):527–546. doi: 10.1016/0022-2836(82)90474-0. [DOI] [PubMed] [Google Scholar]
- Bangs J. D., Brouch E. M., Ransom D. M., Roggy J. L. A soluble secretory reporter system in Trypanosoma brucei. Studies on endoplasmic reticulum targeting. J Biol Chem. 1996 Aug 2;271(31):18387–18393. doi: 10.1074/jbc.271.31.18387. [DOI] [PubMed] [Google Scholar]
- Bird P., Gething M. J., Sambrook J. Translocation in yeast and mammalian cells: not all signal sequences are functionally equivalent. J Cell Biol. 1987 Dec;105(6 Pt 2):2905–2914. doi: 10.1083/jcb.105.6.2905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouvier J., Schneider P., Etges R. Leishmanolysin: surface metalloproteinase of Leishmania. Methods Enzymol. 1995;248:614–633. doi: 10.1016/0076-6879(95)48039-0. [DOI] [PubMed] [Google Scholar]
- Button L. L., Wilson G., Astell C. R., McMaster W. R. Recombinant Leishmania surface glycoprotein GP63 is secreted in the baculovirus expression system as a latent metalloproteinase. Gene. 1993 Nov 30;134(1):75–81. doi: 10.1016/0378-1119(93)90176-4. [DOI] [PubMed] [Google Scholar]
- Carrington M., Miller N., Blum M., Roditi I., Wiley D., Turner M. Variant specific glycoprotein of Trypanosoma brucei consists of two domains each having an independently conserved pattern of cysteine residues. J Mol Biol. 1991 Oct 5;221(3):823–835. doi: 10.1016/0022-2836(91)80178-w. [DOI] [PubMed] [Google Scholar]
- Ferguson M. A. What can GPI do for you? Parasitol Today. 1994 Feb;10(2):48–52. doi: 10.1016/0169-4758(94)90392-1. [DOI] [PubMed] [Google Scholar]
- Garcia P. D., Walter P. Full-length prepro-alpha-factor can be translocated across the mammalian microsomal membrane only if translation has not terminated. J Cell Biol. 1988 Apr;106(4):1043–1048. doi: 10.1083/jcb.106.4.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haeuptle M. T., Flint N., Gough N. M., Dobberstein B. A tripartite structure of the signals that determine protein insertion into the endoplasmic reticulum membrane. J Cell Biol. 1989 Apr;108(4):1227–1236. doi: 10.1083/jcb.108.4.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hauser S., Bacher G., Dobberstein B., Lütcke H. A complex of the signal sequence binding protein and the SRP RNA promotes translocation of nascent proteins. EMBO J. 1995 Nov 15;14(22):5485–5493. doi: 10.1002/j.1460-2075.1995.tb00235.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Innis M. A., Myambo K. B., Gelfand D. H., Brow M. A. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9436–9440. doi: 10.1073/pnas.85.24.9436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inverso J. A., Medina-Acosta E., O'Connor J., Russell D. G., Cross G. A. Crithidia fasciculata contains a transcribed leishmanial surface proteinase (gp63) gene homologue. Mol Biochem Parasitol. 1993 Jan;57(1):47–54. doi: 10.1016/0166-6851(93)90242-p. [DOI] [PubMed] [Google Scholar]
- Izard J. W., Kendall D. A. Signal peptides: exquisitely designed transport promoters. Mol Microbiol. 1994 Sep;13(5):765–773. doi: 10.1111/j.1365-2958.1994.tb00469.x. [DOI] [PubMed] [Google Scholar]
- Julius D., Schekman R., Thorner J. Glycosylation and processing of prepro-alpha-factor through the yeast secretory pathway. Cell. 1984 Feb;36(2):309–318. doi: 10.1016/0092-8674(84)90224-1. [DOI] [PubMed] [Google Scholar]
- Jungnickel B., Rapoport T. A. A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. Cell. 1995 Jul 28;82(2):261–270. doi: 10.1016/0092-8674(95)90313-5. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lenardo M. J., Rice-Ficht A. C., Kelly G., Esser K. M., Donelson J. E. Characterization of the genes specifying two metacyclic variable antigen types in Trypanosoma brucei rhodesiense. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6642–6646. doi: 10.1073/pnas.81.21.6642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConnell J., Cordingley J. S., Turner M. J. The biosynthesis of Trypanosoma brucei variant surface glycoproteins--in vitro processing of signal peptide and glycosylation using heterologous rough endoplasmic reticulum vesicles. Mol Biochem Parasitol. 1982 Sep;6(3):161–174. doi: 10.1016/0166-6851(82)90075-5. [DOI] [PubMed] [Google Scholar]
- McGeoch D. J. On the predictive recognition of signal peptide sequences. Virus Res. 1985 Oct;3(3):271–286. doi: 10.1016/0168-1702(85)90051-6. [DOI] [PubMed] [Google Scholar]
- McMahon-Pratt D., Traub-Cseko Y., Lohman K. L., Rogers D. D., Beverley S. M. Loss of the GP46/M-2 surface membrane glycoprotein gene family in the Leishmania braziliensis complex. Mol Biochem Parasitol. 1992 Jan;50(1):151–160. doi: 10.1016/0166-6851(92)90252-f. [DOI] [PubMed] [Google Scholar]
- Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ng D. T., Brown J. D., Walter P. Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol. 1996 Jul;134(2):269–278. doi: 10.1083/jcb.134.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramamoorthy R., Donelson J. E., Paetz K. E., Maybodi M., Roberts S. C., Wilson M. E. Three distinct RNAs for the surface protease gp63 are differentially expressed during development of Leishmania donovani chagasi promastigotes to an infectious form. J Biol Chem. 1992 Jan 25;267(3):1888–1895. [PubMed] [Google Scholar]
- Rapoport T. A., Jungnickel B., Kutay U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem. 1996;65:271–303. doi: 10.1146/annurev.bi.65.070196.001415. [DOI] [PubMed] [Google Scholar]
- Ray F. A., Nickoloff J. A. Site-specific mutagenesis of almost any plasmid using a PCR-based version of unique site elimination. Biotechniques. 1992 Sep;13(3):342–348. [PubMed] [Google Scholar]
- Rost B., Sander C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins. 1994 May;19(1):55–72. doi: 10.1002/prot.340190108. [DOI] [PubMed] [Google Scholar]
- Rusch S. L., Kendall D. A. Protein transport via amino-terminal targeting sequences: common themes in diverse systems. Mol Membr Biol. 1995 Oct-Dec;12(4):295–307. doi: 10.3109/09687689509072431. [DOI] [PubMed] [Google Scholar]
- Ryan K. A., Garraway L. A., Descoteaux A., Turco S. J., Beverley S. M. Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8609–8613. doi: 10.1073/pnas.90.18.8609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryan P., Edwards C. O. Systematic introduction of proline in a eukaryotic signal sequence suggests asymmetry within the hydrophobic core. J Biol Chem. 1995 Nov 17;270(46):27876–27879. doi: 10.1074/jbc.270.46.27876. [DOI] [PubMed] [Google Scholar]
- Siegel V. A second signal recognition event required for translocation into the endoplasmic reticulum. Cell. 1995 Jul 28;82(2):167–170. doi: 10.1016/0092-8674(95)90301-1. [DOI] [PubMed] [Google Scholar]
- Vallette F., Mege E., Reiss A., Adesnik M. Construction of mutant and chimeric genes using the polymerase chain reaction. Nucleic Acids Res. 1989 Jan 25;17(2):723–733. doi: 10.1093/nar/17.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voigt S., Jungnickel B., Hartmann E., Rapoport T. A. Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane. J Cell Biol. 1996 Jul;134(1):25–35. doi: 10.1083/jcb.134.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter P., Blobel G. Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 1983;96:84–93. doi: 10.1016/s0076-6879(83)96010-x. [DOI] [PubMed] [Google Scholar]
- Walter P., Johnson A. E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol. 1994;10:87–119. doi: 10.1146/annurev.cb.10.110194.000511. [DOI] [PubMed] [Google Scholar]
- Wiedmann M., Huth A., Rapoport T. A. Xenopus oocytes can secrete bacterial beta-lactamase. Nature. 1984 Jun 14;309(5969):637–639. doi: 10.1038/309637a0. [DOI] [PubMed] [Google Scholar]
- von Heijne G., Abrahmsén L. Species-specific variation in signal peptide design. Implications for protein secretion in foreign hosts. FEBS Lett. 1989 Feb 27;244(2):439–446. doi: 10.1016/0014-5793(89)80579-4. [DOI] [PubMed] [Google Scholar]
- von Heijne G. Signal sequences. The limits of variation. J Mol Biol. 1985 Jul 5;184(1):99–105. doi: 10.1016/0022-2836(85)90046-4. [DOI] [PubMed] [Google Scholar]