Abstract
This paper reports experiments on the stereospecificity observed in the monophenolase and diphenolase activities of mushroom tyrosinase. Several enantiomorphs of monophenols and o-diphenols were assayed: L-tyrosine, D,L-tyrosine, D-tyrosine; L-alpha-methyltyrosine, D,L-alpha-methyltyrosine; L-dopa, D,L-dopa, D-dopa; L-alpha-methyldopa, D,L-alpha-methyldopa; L-isoprenaline, D,L-isoprenaline and D-isoprenaline. The Vmax values obtained for each series were the same. The electronic densities on the carbon atoms in the meta (C-3) and the para (C-4) positions of the benzene ring were determined by NMR assays. This value is related to the nucleophilic power of the oxygen atom belonging to the hydroxy group, which could explain the Vmax values experimentally obtained for the monophenolase and diphenolase activities of mushroom tyrosinase. The spatial orientation of the ring substituents led to lower Km values for L-isomers than for D-isomers. However, the Vmax values were the same for each series of isomers because spatial orientation did not affect the NMR value of C-4. Therefore mushroom tyrosinase showed stereospecificity in its affinity towards its substrates (Km) but not in the transformation reaction rate (Vmax) of these substrates.
Full Text
The Full Text of this article is available as a PDF (266.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Duckworth H. W., Coleman J. E. Physicochemical and kinetic properties of mushroom tyrosinase. J Biol Chem. 1970 Apr 10;245(7):1613–1625. [PubMed] [Google Scholar]
- Espín J. C., Morales M., Varón R., Tudela J., García-Cánovas F. A continuous spectrophotometric method for determining the monophenolase and diphenolase activities of apple polyphenol oxidase. Anal Biochem. 1995 Oct 10;231(1):237–246. doi: 10.1006/abio.1995.1526. [DOI] [PubMed] [Google Scholar]
- Espín J. C., Varón R., Tudela J., García-Cánovas F. Kinetic study of the oxidation of 4-hydroxyanisole catalyzed by tyrosinase. Biochem Mol Biol Int. 1997 May;41(6):1265–1276. doi: 10.1080/15216549700202361. [DOI] [PubMed] [Google Scholar]
- García Moreno M., Varón R., Sánchez Gracia A., Tudela J., García Cánovas F. The effect of pH on the suicide inactivation of frog epidermis tyrosinase. Biochim Biophys Acta. 1994 Apr 13;1205(2):282–288. doi: 10.1016/0167-4838(94)90246-1. [DOI] [PubMed] [Google Scholar]
- Jolley R. L., Evans L. H., Mason H. S. Reversible oxygenation of tyrosinase. Biochem Biophys Res Commun. 1972 Jan 31;46(2):878–884. doi: 10.1016/s0006-291x(72)80223-7. [DOI] [PubMed] [Google Scholar]
- MASON H. S. Structures and functions of the phenolase complex. Nature. 1956 Jan 14;177(4498):79–81. doi: 10.1038/177079a0. [DOI] [PubMed] [Google Scholar]
- Makino N., Mason H. S. Reactivity of oxytyrosinase toward substrates. J Biol Chem. 1973 Aug 25;248(16):5731–5735. [PubMed] [Google Scholar]
- POMERANTZ S. H. Separation, purification, and properties of two tyrosinases from hamster melanoma. J Biol Chem. 1963 Jul;238:2351–2357. [PubMed] [Google Scholar]
- Pomerantz S. H., Murthy V. V. Purification and properties of tyrosinases from Vibrio tyrosinaticus. Arch Biochem Biophys. 1974 Jan;160(1):73–82. doi: 10.1016/s0003-9861(74)80010-x. [DOI] [PubMed] [Google Scholar]
- Prota G. Progress in the chemistry of melanins and related metabolites. Med Res Rev. 1988 Oct-Dec;8(4):525–556. doi: 10.1002/med.2610080405. [DOI] [PubMed] [Google Scholar]
- Rodríguez-López J. N., Escribano J., García-Cánovas F. A continuous spectrophotometric method for the determination of monophenolase activity of tyrosinase using 3-methyl-2-benzothiazolinone hydrazone. Anal Biochem. 1994 Jan;216(1):205–212. doi: 10.1006/abio.1994.1026. [DOI] [PubMed] [Google Scholar]
- Rodríguez-López J. N., Tudela J., Varón R., García-Cánovas F. Kinetic study on the effect of pH on the melanin biosynthesis pathway. Biochim Biophys Acta. 1991 Feb 15;1076(3):379–386. doi: 10.1016/0167-4838(91)90480-n. [DOI] [PubMed] [Google Scholar]
- Ros J. R., Rodríguez-López J. N., García-Cánovas F. Tyrosinase: kinetic analysis of the transient phase and the steady state. Biochim Biophys Acta. 1994 Jan 11;1204(1):33–42. doi: 10.1016/0167-4838(94)90029-9. [DOI] [PubMed] [Google Scholar]
- Schoot Uiterkamp A. J., Evans L. H., Jolley R. L., Mason H. S. Absorption and circular dichroism spectra of different forms of mushroom tyrosinase. Biochim Biophys Acta. 1976 Nov 26;453(1):200–204. doi: 10.1016/0005-2795(76)90264-6. [DOI] [PubMed] [Google Scholar]
- Solomon E. I., Lowery M. D. Electronic structure contributions to function in bioinorganic chemistry. Science. 1993 Mar 12;259(5101):1575–1581. doi: 10.1126/science.8384374. [DOI] [PubMed] [Google Scholar]
- Solomon Edward I., Sundaram Uma M., Machonkin Timothy E. Multicopper Oxidases and Oxygenases. Chem Rev. 1996 Nov 7;96(7):2563–2606. doi: 10.1021/cr950046o. [DOI] [PubMed] [Google Scholar]
- Sonesson B., Eide S., Rorsman H., Rosengren E. Seasonal variation of tyrosinase activity in serum. Acta Derm Venereol. 1995 Jul;75(4):283–286. doi: 10.2340/0001555575283286. [DOI] [PubMed] [Google Scholar]
- Uiterkamp A. J., Mason H. S. Magnetic dipole-dipole coupled Cu(II) pairs in nitric oxide-treated tyrosinase: a structural relationship between the active sites of tyrosinase and hemocyanin. Proc Natl Acad Sci U S A. 1973 Apr;70(4):993–996. doi: 10.1073/pnas.70.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winder A. J., Harris H. New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase. Eur J Biochem. 1991 Jun 1;198(2):317–326. doi: 10.1111/j.1432-1033.1991.tb16018.x. [DOI] [PubMed] [Google Scholar]