Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Apr 15;331(Pt 2):615–621. doi: 10.1042/bj3310615

Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells.

A Disch 1, A Hemmerlin 1, T J Bach 1, M Rohmer 1
PMCID: PMC1219396  PMID: 9531505

Abstract

Study of the incorporation of 13C-labelled glucose or pyruvate into the isoprenoids of tobacco BY-2 cells allowed the biosynthetic origin of isopentenyl diphosphate to be determined. Sterols synthesized in the cytoplasm and the prenyl chain of ubiquinone Q10 located in mitochondria were derived from the same isopentenyl diphosphate pool, synthesized from acetyl-CoA through mevalonate, whereas the prenyl chain of plastoquinone was obtained from the mevalonate-independent glyceraldehyde 3-phosphate/pyruvate route, like all chloroplast isoprenoids from higher plants. These results are in accord with the compartmentation and complete enzymic independence of the biosynthesis of long-chain all-trans polyprenols in mitochondria and chloroplasts.

Full Text

The Full Text of this article is available as a PDF (343.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts A. W., Chen J., Kuron G., Hunt V., Huff J., Hoffman C., Rothrock J., Lopez M., Joshua H., Harris E. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3957–3961. doi: 10.1073/pnas.77.7.3957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arigoni D., Sagner S., Latzel C., Eisenreich W., Bacher A., Zenk M. H. Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10600–10605. doi: 10.1073/pnas.94.20.10600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bach T. J. Some new aspects of isoprenoid biosynthesis in plants--a review. Lipids. 1995 Mar;30(3):191–202. doi: 10.1007/BF02537822. [DOI] [PubMed] [Google Scholar]
  4. Banthorpe D. V., Charlwood B. V., Francis M. J. The biosynthesis of monoterpenes. Chem Rev. 1972 Apr;72(2):115–155. doi: 10.1021/cr60276a002. [DOI] [PubMed] [Google Scholar]
  5. Casey J., Threlfall D. R. Formation of 3-hexaprenyl-4-hydroxybenzoate by matrix-free mitochondrial membrane-rich preparations of yeast. Biochim Biophys Acta. 1978 Sep 28;530(3):487–502. doi: 10.1016/0005-2760(78)90168-6. [DOI] [PubMed] [Google Scholar]
  6. Cornish K. The separate roles of plant cis and trans prenyl transferases in cis-1,4-polyisoprene biosynthesis. Eur J Biochem. 1993 Nov 15;218(1):267–271. doi: 10.1111/j.1432-1033.1993.tb18374.x. [DOI] [PubMed] [Google Scholar]
  7. Eisenreich W., Menhard B., Hylands P. J., Zenk M. H., Bacher A. Studies on the biosynthesis of taxol: the taxane carbon skeleton is not of mevalonoid origin. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6431–6436. doi: 10.1073/pnas.93.13.6431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ernster L., Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta. 1995 May 24;1271(1):195–204. doi: 10.1016/0925-4439(95)00028-3. [DOI] [PubMed] [Google Scholar]
  9. Flesch G., Rohmer M. Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur J Biochem. 1988 Aug 1;175(2):405–411. doi: 10.1111/j.1432-1033.1988.tb14210.x. [DOI] [PubMed] [Google Scholar]
  10. Forsmark-Andrée P., Dallner G., Ernster L. Endogenous ubiquinol prevents protein modification accompanying lipid peroxidation in beef heart submitochondrial particles. Free Radic Biol Med. 1995 Dec;19(6):749–757. doi: 10.1016/0891-5849(95)00076-a. [DOI] [PubMed] [Google Scholar]
  11. Knöss W., Reuter B., Zapp J. Biosynthesis of the labdane diterpene marrubiin in Marrubium vulgare via a non-mevalonate pathway. Biochem J. 1997 Sep 1;326(Pt 2):449–454. doi: 10.1042/bj3260449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kreuz K., Kleinig H. Synthesis of prenyl lipids in cells of spinach leaf. Compartmentation of enzymes for formation of isopentenyl diphosphate. Eur J Biochem. 1984 Jun 15;141(3):531–535. doi: 10.1111/j.1432-1033.1984.tb08225.x. [DOI] [PubMed] [Google Scholar]
  13. Lichtenthaler H. K., Schwender J., Disch A., Rohmer M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett. 1997 Jan 6;400(3):271–274. doi: 10.1016/s0014-5793(96)01404-4. [DOI] [PubMed] [Google Scholar]
  14. Lütke-Brinkhaus F., Liedvogel B., Kleinig H. On the biosynthesis of ubiquinones in plant mitochondria. Eur J Biochem. 1984 Jun 15;141(3):537–541. doi: 10.1111/j.1432-1033.1984.tb08226.x. [DOI] [PubMed] [Google Scholar]
  15. Momose K., Rudney H. 3-Polyprenyl-4-hydroxybenzoate synthesis in the inner membrane of mitochondria from p-hydroxybenzoate and isopentenylpyrophosphate. A demonstration of isoprenoid synthesis in rat liver mitochondria. J Biol Chem. 1972 Jun 25;247(12):3930–3940. [PubMed] [Google Scholar]
  16. Osowska-Rogers S., Swiezewska E., Andersson B., Dallner G. The endoplasmic reticulum-Golgi system is a major site of plastoquinone synthesis in spinach leaves. Biochem Biophys Res Commun. 1994 Nov 30;205(1):714–721. doi: 10.1006/bbrc.1994.2724. [DOI] [PubMed] [Google Scholar]
  17. Rohmer M., Knani M., Simonin P., Sutter B., Sahm H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 1993 Oct 15;295(Pt 2):517–524. doi: 10.1042/bj2950517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Runquist M., Ericsson J., Thelin A., Chojnacki T., Dallner G. Isoprenoid biosynthesis in rat liver mitochondria. Studies on farnesyl pyrophosphate synthase and trans-prenyltransferase. J Biol Chem. 1994 Feb 25;269(8):5804–5809. [PubMed] [Google Scholar]
  19. Schwender J., Seemann M., Lichtenthaler H. K., Rohmer M. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J. 1996 May 15;316(Pt 1):73–80. doi: 10.1042/bj3160073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Swiezewska E., Dallner G., Andersson B., Ernster L. Biosynthesis of ubiquinone and plastoquinone in the endoplasmic reticulum-Golgi membranes of spinach leaves. J Biol Chem. 1993 Jan 15;268(2):1494–1499. [PubMed] [Google Scholar]
  21. Teclebrhan H., Jakobsson-Borin A., Brunk U., Dallner G. Relationship between the endoplasmic reticulum-Golgi membrane system and ubiquinone biosynthesis. Biochim Biophys Acta. 1995 May 17;1256(2):157–165. doi: 10.1016/0005-2760(95)00016-6. [DOI] [PubMed] [Google Scholar]
  22. Teclebrhan H., Olsson J., Swiezewska E., Dallner G. Biosynthesis of the side chain of ubiquinone:trans-prenyltransferase in rat liver microsomes. J Biol Chem. 1993 Nov 5;268(31):23081–23086. [PubMed] [Google Scholar]
  23. Treharne K. J., Mercer E. I., Goodwin T. W. Incorporation of [14C] carbon dioxide and [2-14C] mevalonic acid into terpenoids of higher plants during chloroplast development. Biochem J. 1966 Apr;99(1):239–245. doi: 10.1042/bj0990239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Trumpower B. L., Houser R. M., Olson R. E. Studies on ubiquinone. Demonstration of the total biosynthesis of ubiquinone-9 in rat liver mitochondria. J Biol Chem. 1974 May 25;249(10):3041–3048. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES