Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Apr 15;331(Pt 2):623–630. doi: 10.1042/bj3310623

Histones and basic polypeptides activate Ca2+/cation influx in various cell types.

A Gamberucci 1, R Fulceri 1, P Marcolongo 1, W F Pralong 1, A Benedetti 1
PMCID: PMC1219397  PMID: 9531506

Abstract

Histone H2A (1-10 microg/ml) added to Ehrlich ascite cell suspensions promoted: (i) Ca2+ influx, but no apparent intracellular Ca2+ mobilization; (ii) plasma-membrane depolarization and Na+ influx in Ca2+-free medium, which were recovered by Ca2+ readmission; (iii) influx of other cations such as Ba2+, Mn2+, choline+ and N-methyl-d-glucamine+, but not of propidium+, ethidium bromide and Trypan Blue. H2A-induced Ca2+ influx and cell depolarization were: (i) blocked by La3+ and Gd3+, but not by various inhibitors of receptor-activated Ca2+-influx pathways/channels; (ii) mimicked by various basic polypeptides, with Mr>4000; (iii) prevented or reversed by polyanions such as polyglutamate or heparin; (iv) present in other cell types, such as Jurkat, PC12 and Friend erythroleukaemia cells, but virtually absent from rat hepatocytes and thymocytes. We conclude that cationic proteins/polypeptides, by interacting in a cell-specific manner with the cell surface, can activate in those cells putative non-selective Ca2+ channels and membrane depolarization.

Full Text

The Full Text of this article is available as a PDF (518.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albini A., Noonan D. M., Melchiori A., Fassina G. F., Percario M., Gentleman S., Toffenetti J., Chader G. J. Laminin-induced retinoblastoma cell differentiation: possible involvement of a 100-kDa cell-surface laminin-binding protein. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2257–2261. doi: 10.1073/pnas.89.6.2257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alvarez J., Montero M., García-Sancho J. Cytochrome P-450 may link intracellular Ca2+ stores with plasma membrane Ca2+ influx. Biochem J. 1991 Feb 15;274(Pt 1):193–197. doi: 10.1042/bj2740193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnold L. J., Jr, Dagan A., Gutheil J., Kaplan N. O. Antineoplastic activity of poly(L-lysine) with some ascites tumor cells. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3246–3250. doi: 10.1073/pnas.76.7.3246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arnold L. J., Jr Polylysine-drug conjugates. Methods Enzymol. 1985;112:270–285. doi: 10.1016/s0076-6879(85)12023-9. [DOI] [PubMed] [Google Scholar]
  5. Aten R. F., Behrman H. R. Antigonadotropic effects of the bovine ovarian gonadotropin-releasing hormone-binding inhibitor/histone H2A in rat luteal and granulosal cells. J Biol Chem. 1989 Jul 5;264(19):11072–11075. [PubMed] [Google Scholar]
  6. Bahnson T. D., Pandol S. J., Dionne V. E. Cyclic GMP modulates depletion-activated Ca2+ entry in pancreatic acinar cells. J Biol Chem. 1993 May 25;268(15):10808–10812. [PubMed] [Google Scholar]
  7. Bernardini G., Donne I. D., Norreri S., Negri A., Milzani A. Xenopus laevis sperm proteins, previously identified as surface proteins with egg coat binding capability, are indeed histone H4, histone H3, and sperm specific protein SP2. J Exp Zool. 1992 Aug 15;263(2):210–214. doi: 10.1002/jez.1402630211. [DOI] [PubMed] [Google Scholar]
  8. Berridge M. J. Capacitative calcium entry. Biochem J. 1995 Nov 15;312(Pt 1):1–11. doi: 10.1042/bj3120001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bilozur M. E., Biswas C. Identification and characterization of heparan sulfate-binding proteins from human lung carcinoma cells. J Biol Chem. 1990 Nov 15;265(32):19697–19703. [PubMed] [Google Scholar]
  10. Bird G. S., Putney J. W., Jr Inhibition of thapsigargin-induced calcium entry by microinjected guanine nucleotide analogues. Evidence for the involvement of a small G-protein in capacitative calcium entry. J Biol Chem. 1993 Oct 15;268(29):21486–21488. [PubMed] [Google Scholar]
  11. Bogdanov A. A., Jr, Gordeeva L. V., Baibakov B. A., Margolis L. B., Torchilin V. P. Restoration of adhesive potentials of Ehrlich ascites carcinoma cells by modification of plasma membrane. J Cell Physiol. 1991 Apr;147(1):182–190. doi: 10.1002/jcp.1041470123. [DOI] [PubMed] [Google Scholar]
  12. Broad L. M., Powis D. A., Taylor C. W. Differentiation of BC3H1 smooth muscle cells changes the bivalent cation selectivity of the capacitative Ca2+ entry pathway. Biochem J. 1996 Jun 15;316(Pt 3):759–764. doi: 10.1042/bj3160759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Carini R., Bellomo G., Benedetti A., Fulceri R., Gamberucci A., Parola M., Dianzani M. U., Albano E. Alteration of Na+ homeostasis as a critical step in the development of irreversible hepatocyte injury after adenosine triphosphate depletion. Hepatology. 1995 Apr;21(4):1089–1098. [PubMed] [Google Scholar]
  14. Cheek T. R., Murawsky M. M., Stauderman K. A. Histamine-induced Ca2+ entry precedes Ca2+ mobilization in bovine adrenal chromaffin cells. Biochem J. 1994 Dec 1;304(Pt 2):469–476. doi: 10.1042/bj3040469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Christensen O., Hoffmann E. K. Cell swelling activates K+ and Cl- channels as well as nonselective, stretch-activated cation channels in Ehrlich ascites tumor cells. J Membr Biol. 1992 Jul;129(1):13–36. doi: 10.1007/BF00232052. [DOI] [PubMed] [Google Scholar]
  16. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  17. Edelman G. M., Crossin K. L. Cell adhesion molecules: implications for a molecular histology. Annu Rev Biochem. 1991;60:155–190. doi: 10.1146/annurev.bi.60.070191.001103. [DOI] [PubMed] [Google Scholar]
  18. Emlen W., Holers V. M., Arend W. P., Kotzin B. Regulation of nuclear antigen expression on the cell surface of human monocytes. J Immunol. 1992 May 15;148(10):3042–3048. [PubMed] [Google Scholar]
  19. Fasolato C., Hoth M., Penner R. A GTP-dependent step in the activation mechanism of capacitative calcium influx. J Biol Chem. 1993 Oct 5;268(28):20737–20740. [PubMed] [Google Scholar]
  20. Fasolato C., Innocenti B., Pozzan T. Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends Pharmacol Sci. 1994 Mar;15(3):77–83. doi: 10.1016/0165-6147(94)90282-8. [DOI] [PubMed] [Google Scholar]
  21. Fasolato C., Pandiella A., Meldolesi J., Pozzan T. Generation of inositol phosphates, cytosolic Ca2+, and ionic fluxes in PC12 cells treated with bradykinin. J Biol Chem. 1988 Nov 25;263(33):17350–17359. [PubMed] [Google Scholar]
  22. Felder C. C., Singer-Lahat D., Mathes C. Voltage-independent calcium channels. Regulation by receptors and intracellular calcium stores. Biochem Pharmacol. 1994 Nov 29;48(11):1997–2004. doi: 10.1016/0006-2952(94)90498-7. [DOI] [PubMed] [Google Scholar]
  23. Fromm J. R., Hileman R. E., Caldwell E. E., Weiler J. M., Linhardt R. J. Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor. Arch Biochem Biophys. 1995 Nov 10;323(2):279–287. doi: 10.1006/abbi.1995.9963. [DOI] [PubMed] [Google Scholar]
  24. Gahmberg C. G., Tolvanen M. Why mammalian cell surface proteins are glycoproteins. Trends Biochem Sci. 1996 Aug;21(8):308–311. [PubMed] [Google Scholar]
  25. Gamberucci A., Innocenti B., Fulceri R., Bànhegyi G., Giunti R., Pozzan T., Benedetti A. Modulation of Ca2+ influx dependent on store depletion by intracellular adenine-guanine nucleotide levels. J Biol Chem. 1994 Sep 23;269(38):23597–23602. [PubMed] [Google Scholar]
  26. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  27. Horneland M., Rekvig O. P., Jørgensen L., Hannestad K. Cultured human endothelial cells display an antigen that is recognized by certain human anti-chromatin autoantibodies. Clin Exp Immunol. 1983 Nov;54(2):373–377. [PMC free article] [PubMed] [Google Scholar]
  28. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
  29. Hynes R. O., Yamada K. M. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982 Nov;95(2 Pt 1):369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jackson R. L., Busch S. J., Cardin A. D. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev. 1991 Apr;71(2):481–539. doi: 10.1152/physrev.1991.71.2.481. [DOI] [PubMed] [Google Scholar]
  31. Joliot A. H., Triller A., Volovitch M., Pernelle C., Prochiantz A. alpha-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biol. 1991 Nov;3(11):1121–1134. [PubMed] [Google Scholar]
  32. Kornguth S. E., Kalinke T., Robins H. I., Cohen J. D., Turski P. Preferential binding of radiolabeled poly-L-lysines to C6 and U87 MG glioblastomas compared with endothelial cells in vitro. Cancer Res. 1989 Nov 15;49(22):6390–6395. [PubMed] [Google Scholar]
  33. Kuno M., Gardner P. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature. 1987 Mar 19;326(6110):301–304. doi: 10.1038/326301a0. [DOI] [PubMed] [Google Scholar]
  34. Latorre R., Oberhauser A., Labarca P., Alvarez O. Varieties of calcium-activated potassium channels. Annu Rev Physiol. 1989;51:385–399. doi: 10.1146/annurev.ph.51.030189.002125. [DOI] [PubMed] [Google Scholar]
  35. Ledeen R. W., Yu R. K. Gangliosides: structure, isolation, and analysis. Methods Enzymol. 1982;83:139–191. doi: 10.1016/0076-6879(82)83012-7. [DOI] [PubMed] [Google Scholar]
  36. Louters L. L., Henriksen E. J., Tipton C. M. Histone H4 stimulates glucose transport activity in rat skeletal muscle. Biochem J. 1993 Oct 15;295(Pt 2):549–553. doi: 10.1042/bj2950549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lubec G. Interactions of N-CAM with heparin-like molecules. Nature. 1986 Oct 23;323(6090):743–744. doi: 10.1038/323743c0. [DOI] [PubMed] [Google Scholar]
  38. Lückhoff A., Clapham D. E. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel. Nature. 1992 Jan 23;355(6358):356–358. doi: 10.1038/355356a0. [DOI] [PubMed] [Google Scholar]
  39. Margalit H., Fischer N., Ben-Sasson S. A. Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J Biol Chem. 1993 Sep 15;268(26):19228–19231. [PubMed] [Google Scholar]
  40. McConkey D. J., Nicotera P., Hartzell P., Bellomo G., Wyllie A. H., Orrenius S. Glucocorticoids activate a suicide process in thymocytes through an elevation of cytosolic Ca2+ concentration. Arch Biochem Biophys. 1989 Feb 15;269(1):365–370. doi: 10.1016/0003-9861(89)90119-7. [DOI] [PubMed] [Google Scholar]
  41. McDonald T. F., Pelzer S., Trautwein W., Pelzer D. J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev. 1994 Apr;74(2):365–507. doi: 10.1152/physrev.1994.74.2.365. [DOI] [PubMed] [Google Scholar]
  42. McEwan G. T., Jepson M. A., Hirst B. H., Simmons N. L. Polycation-induced enhancement of epithelial paracellular permeability is independent of tight junctional characteristics. Biochim Biophys Acta. 1993 May 14;1148(1):51–60. doi: 10.1016/0005-2736(93)90159-w. [DOI] [PubMed] [Google Scholar]
  43. Moldéus P., Högberg J., Orrenius S. Isolation and use of liver cells. Methods Enzymol. 1978;52:60–71. doi: 10.1016/s0076-6879(78)52006-5. [DOI] [PubMed] [Google Scholar]
  44. Murgia M., Hanau S., Pizzo P., Rippa M., Di Virgilio F. Oxidized ATP. An irreversible inhibitor of the macrophage purinergic P2Z receptor. J Biol Chem. 1993 Apr 15;268(11):8199–8203. [PubMed] [Google Scholar]
  45. Newgard C. B., McGarry J. D. Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem. 1995;64:689–719. doi: 10.1146/annurev.bi.64.070195.003353. [DOI] [PubMed] [Google Scholar]
  46. Ojcius D. M., Muller S., Hasselkus-Light C. S., Young J. D., Jiang S. Plasma membrane-associated proteins with the ability to partially inhibit perforin-mediated lysis. Immunol Lett. 1991 May;28(2):101–108. doi: 10.1016/0165-2478(91)90106-k. [DOI] [PubMed] [Google Scholar]
  47. Putney J. W., Jr Type 3 inositol 1,4,5-trisphosphate receptor and capacitative calcium entry. Cell Calcium. 1997 Mar;21(3):257–261. doi: 10.1016/s0143-4160(97)90050-6. [DOI] [PubMed] [Google Scholar]
  48. Randriamampita C., Tsien R. Y. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature. 1993 Aug 26;364(6440):809–814. doi: 10.1038/364809a0. [DOI] [PubMed] [Google Scholar]
  49. Reichhart R., Jörnvall H., Carlquist M., Zeppezauer M. The primary structure of two polypeptide chains from preparations of homeostatic thymus hormone (HTH alpha and HTH beta) entire-chain identities to two histones. FEBS Lett. 1985 Aug 19;188(1):63–67. doi: 10.1016/0014-5793(85)80875-9. [DOI] [PubMed] [Google Scholar]
  50. Reichhart R., Zeppezauer M., Jörnvall H. Preparations of homeostatic thymus hormone consist predominantly of histones 2A and 2B and suggest additional histone functions. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4871–4875. doi: 10.1073/pnas.82.15.4871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Reuter G., Schauer R. Determination of sialic acids. Methods Enzymol. 1994;230:168–199. doi: 10.1016/0076-6879(94)30012-7. [DOI] [PubMed] [Google Scholar]
  52. Sage S. O., Rink T. J. The kinetics of changes in intracellular calcium concentration in fura-2-loaded human platelets. J Biol Chem. 1987 Dec 5;262(34):16364–16369. [PubMed] [Google Scholar]
  53. Sommer B., Seeburg P. H. Glutamate receptor channels: novel properties and new clones. Trends Pharmacol Sci. 1992 Jul;13(7):291–296. doi: 10.1016/0165-6147(92)90088-n. [DOI] [PubMed] [Google Scholar]
  54. Takemura H., Hughes A. R., Thastrup O., Putney J. W., Jr Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem. 1989 Jul 25;264(21):12266–12271. [PubMed] [Google Scholar]
  55. Varki A. Metabolic radiolabeling of glycoconjugates. Methods Enzymol. 1994;230:16–32. doi: 10.1016/0076-6879(94)30004-6. [DOI] [PubMed] [Google Scholar]
  56. Vostal J. G., Jackson W. L., Shulman N. R. Cytosolic and stored calcium antagonistically control tyrosine phosphorylation of specific platelet proteins. J Biol Chem. 1991 Sep 5;266(25):16911–16916. [PubMed] [Google Scholar]
  57. Watson K., Edwards R. J., Shaunak S., Parmelee D. C., Sarraf C., Gooderham N. J., Davies D. S. Extra-nuclear location of histones in activated human peripheral blood lymphocytes and cultured T-cells. Biochem Pharmacol. 1995 Jul 31;50(3):299–309. doi: 10.1016/0006-2952(95)00142-m. [DOI] [PubMed] [Google Scholar]
  58. von Tscharner V., Prod'hom B., Baggiolini M., Reuter H. Ion channels in human neutrophils activated by a rise in free cytosolic calcium concentration. 1986 Nov 27-Dec 3Nature. 324(6095):369–372. doi: 10.1038/324369a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES