Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 May 1;331(Pt 3):681–685. doi: 10.1042/bj3310681

The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin IX in the mu-oxo dimeric form: an oxidative buffer and possible pathogenic mechanism.

J W Smalley 1, J Silver 1, P J Marsh 1, A J Birss 1
PMCID: PMC1219405  PMID: 9560292

Abstract

Mössbauer spectroscopy was used to re-evaluate iron protoporphyrin IX, FePPIX, binding and the chemical nature of the black iron porphyrin pigment of Porphyromonas gingivalis. We demonstrate that FePPIX is bound to the cell in the mu-oxo dimeric form, [Fe(III)PPIX]2O, and that the iron porphyrin pigment is also composed of this material. P. gingivalis also assimilated monomeric Fe(II)- and Fe(III)PPIX into mu-oxo dimers in vitro. Scatchard analysis revealed a greater binding maximum of cells for mu-oxo dimers than for monomeric Fe(III)-or Fe(II)PPIX, although the relative affinity constant for the dimers was lower. Formation of [Fe(III)PPIX]2O via reactions of Fe(II)PPIX with oxygen, and its toxic derivatives, would serve as an oxidative buffer and permit P. gingivalis and other black-pigmenting anaerobes to engender and maintain a local anaerobic environment. Tying up of free oxygen species with iron protoporphyrin IX would also reduce and limit Fe(II)PPIX-mediated oxygen-radical cell damage. More importantly, formation of a cell-surface mu-oxo dimer layer may function as a protective barrier against assault by reactive oxidants generated by neutrophils. Selective interference with these mechanisms would offer the possibility of attenuating the pathogenicity of P. gingivalis and other iron protoporphyrin IX-binding pathogens whose virulence is regulated by this reactive molecule.

Full Text

The Full Text of this article is available as a PDF (280.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams P. A., Berman P. A., Egan T. J., Marsh P. J., Silver J. The iron environment in heme and heme-antimalarial complexes of pharmacological interest. J Inorg Biochem. 1996 Jul;63(1):69–77. doi: 10.1016/0162-0134(95)00212-x. [DOI] [PubMed] [Google Scholar]
  2. Adams P. A., Egan T. J., Ross D. C., Silver J., Marsh P. J. The chemical mechanism of beta-haematin formation studied by Mössbauer spectroscopy. Biochem J. 1996 Aug 15;318(Pt 1):25–27. doi: 10.1042/bj3180025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bramanti T. E., Holt S. C. Hemin uptake in Porphyromonas gingivalis: Omp26 is a hemin-binding surface protein. J Bacteriol. 1993 Nov;175(22):7413–7420. doi: 10.1128/jb.175.22.7413-7420.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bramanti T. E., Holt S. C. Roles of porphyrins and host iron transport proteins in regulation of growth of Porphyromonas gingivalis W50. J Bacteriol. 1991 Nov;173(22):7330–7339. doi: 10.1128/jb.173.22.7330-7339.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bramanti T. E., Wong G. G., Weintraub S. T., Holt S. C. Chemical characterization and biologic properties of lipopolysaccharide from Bacteroides gingivalis strains W50, W83, and ATCC 33277. Oral Microbiol Immunol. 1989 Dec;4(4):183–192. doi: 10.1111/j.1399-302x.1989.tb00250.x. [DOI] [PubMed] [Google Scholar]
  6. Carlsson J., Höfling J. F., Sundqvist G. K. Degradation of albumin, haemopexin, haptoglobin and transferrin, by black-pigmented Bacteroides species. J Med Microbiol. 1984 Aug;18(1):39–46. doi: 10.1099/00222615-18-1-39. [DOI] [PubMed] [Google Scholar]
  7. Grenier D. Hemin-binding property of Porphyromonas gingivalis outer membranes. FEMS Microbiol Lett. 1991 Jan 1;61(1):45–49. doi: 10.1016/0378-1097(91)90011-x. [DOI] [PubMed] [Google Scholar]
  8. Gutteridge J. M., Smith A. Antioxidant protection by haemopexin of haem-stimulated lipid peroxidation. Biochem J. 1988 Dec 15;256(3):861–865. doi: 10.1042/bj2560861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kay H. M., Birss A. J., Smalley J. W. Haemagglutinating and haemolytic activity of the extracellular vesicles of Bacteroides gingivalis W50. Oral Microbiol Immunol. 1990 Oct;5(5):269–274. doi: 10.1111/j.1399-302x.1990.tb00424.x. [DOI] [PubMed] [Google Scholar]
  10. Kenney E. B., Ash M. M., Jr Oxidation reduction potential of developing plaque, periodontal pockets and gingival sulci. J Periodontol. 1969 Nov;40(11):630–633. doi: 10.1902/jop.1969.40.11.630. [DOI] [PubMed] [Google Scholar]
  11. Lee B. C. Quelling the red menace: haem capture by bacteria. Mol Microbiol. 1995 Nov;18(3):383–390. doi: 10.1111/j.1365-2958.1995.mmi_18030383.x. [DOI] [PubMed] [Google Scholar]
  12. Marquis R. E. Oxygen metabolism, oxidative stress and acid-base physiology of dental plaque biofilms. J Ind Microbiol. 1995 Sep;15(3):198–207. doi: 10.1007/BF01569826. [DOI] [PubMed] [Google Scholar]
  13. Marsh P. D., McDermid A. S., McKee A. S., Baskerville A. The effect of growth rate and haemin on the virulence and proteolytic activity of Porphyromonas gingivalis W50. Microbiology. 1994 Apr;140(Pt 4):861–865. doi: 10.1099/00221287-140-4-861. [DOI] [PubMed] [Google Scholar]
  14. Marsh P. D. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res. 1994 Jul;8(2):263–271. doi: 10.1177/08959374940080022001. [DOI] [PubMed] [Google Scholar]
  15. McKee A. S., McDermid A. S., Baskerville A., Dowsett A. B., Ellwood D. C., Marsh P. D. Effect of hemin on the physiology and virulence of Bacteroides gingivalis W50. Infect Immun. 1986 May;52(2):349–355. doi: 10.1128/iai.52.2.349-355.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mettraux G. R., Gusberti F. A., Graf H. Oxygen tension (pO2) in untreated human periodontal pockets. J Periodontol. 1984 Sep;55(9):516–521. doi: 10.1902/jop.1984.55.9.516. [DOI] [PubMed] [Google Scholar]
  17. Mukherjee S. The role of crevicular fluid iron in periodontal disease. J Periodontol. 1985 Nov;56(11 Suppl):22–27. doi: 10.1902/jop.1985.56.11s.22. [DOI] [PubMed] [Google Scholar]
  18. Rizza V., Sinclair P. R., White D. C., Cuorant P. R. Electron transport system of the protoheme-requiring anaerobe Bacteroides melaninogenicus. J Bacteriol. 1968 Sep;96(3):665–671. doi: 10.1128/jb.96.3.665-671.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shah H. N., Bonnett R., Mateen B., Williams R. A. The porphyrin pigmentation of subspecies of Bacteroides melaninogenicus. Biochem J. 1979 Apr 15;180(1):45–50. doi: 10.1042/bj1800045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smalley J. W., Birss A. J. Albumin and hemalbumin degradation by Porphyromonas gingivalis. Oral Microbiol Immunol. 1997 Aug;12(4):254–258. doi: 10.1111/j.1399-302x.1997.tb00388.x. [DOI] [PubMed] [Google Scholar]
  21. Smalley J. W., Birss A. J., McKee A. S., Marsh P. D. Haemin binding as a factor in the virulence of Porphyromonas gingivalis. FEMS Microbiol Lett. 1996 Jul 15;141(1):65–70. doi: 10.1111/j.1574-6968.1996.tb08364.x. [DOI] [PubMed] [Google Scholar]
  22. Smalley J. W., Birss A. J., McKee A. S., Marsh P. D. Haemin-binding proteins of Porphyromonas gingivalis W50 grown in a chemostat under haemin-limitation. J Gen Microbiol. 1993 Sep;139(9):2145–2150. doi: 10.1099/00221287-139-9-2145. [DOI] [PubMed] [Google Scholar]
  23. Smalley J. W., Birss A. J., McKee A. S., Marsh P. D. Haemin-restriction influences haemin-binding, haemagglutination and protease activity of cells and extracellular membrane vesicles of Porphyromonas gingivalis W50. FEMS Microbiol Lett. 1991 Dec 15;69(1):63–67. doi: 10.1016/0378-1097(91)90647-s. [DOI] [PubMed] [Google Scholar]
  24. Smalley J. W., Birss A. J., McKee A. S., Marsh P. D. Hemin regulation of hemoglobin binding by Porphyromonas gingivalis. Curr Microbiol. 1998 Feb;36(2):102–106. doi: 10.1007/s002849900287. [DOI] [PubMed] [Google Scholar]
  25. Smalley J. W., Birss A. J. Trypsin-like enzyme activity of the extracellular membrane vesicles of Bacteroides gingivalis W50. J Gen Microbiol. 1987 Oct;133(10):2883–2894. doi: 10.1099/00221287-133-10-2883. [DOI] [PubMed] [Google Scholar]
  26. U S., Harper F., Curtis M. A. Haemin inhibits the trypsin-like enzyme activity of Porphyromonas gingivalis W83. FEMS Microbiol Lett. 1990 Oct;60(1-2):169–172. doi: 10.1111/j.1574-6968.1990.tb03883.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES