Abstract
The plot of kcat/Km against pH for the Bacillus cereus 569/H beta-lactamase class B catalysed hydrolysis of benzylpenicillin and cephalosporin indicates that there are three catalytically important groups, two of pKa 5.6+/-0.2 and one of pKa 9.5+/-0.2. Below pH 5 there is an inverse second-order dependence of reactivity upon hydrogen ion concentration, indicative of the requirement of two basic residues for catalysis. These are assigned to zinc(II)-bound water and Asp-90, both with a pKa of 5.6+/-0.2. A thiol, N-(2'-mercaptoethyl)-2-phenylacetamide, is an inhibitor of the class B enzyme with a Ki of 70 microM. The pH-dependence of Ki shows similar pH inflections to those observed in the catalysed hydrolysis of substrates. The pH-independence of Ki between pH 6 and 9 indicates that the pKa of zinc(II)-bound water must be 5.6 and not the higher pKa of 9.5. The kinetic solvent isotope effect on kcat/Km is 1.3+/-0.5 and that on kcat is 1.5. There is no effect on reactivity by either added zinc(II) or methanol. The possible mechanisms of action for the class B beta-lactamase are discussed, and it is concluded that zinc(II) acts as a Lewis acid to stabilize the dianionic form of the tetrahedral intermediate and to provide a hydroxide-ion bound nucleophile, whereas the carboxylate anion of Asp-90 acts as a general base to form the dianion and also, presumably, as a general acid catalyst facilitating C-N bond fission.
Full Text
The Full Text of this article is available as a PDF (469.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambler R. P., Coulson A. F., Frère J. M., Ghuysen J. M., Joris B., Forsman M., Levesque R. C., Tiraby G., Waley S. G. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991 May 15;276(Pt 1):269–270. doi: 10.1042/bj2760269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ambler R. P., Daniel M., Fleming J., Hermoso J. M., Pang C., Waley S. G. The amino acid sequence of the zinc-requiring beta-lactamase II from the bacterium Bacillus cereus 569. FEBS Lett. 1985 Sep 23;189(2):207–211. doi: 10.1016/0014-5793(85)81024-3. [DOI] [PubMed] [Google Scholar]
- Baldwin G. S., Galdes A., Hill H. A., Smith B. E., Waley S. G., Abraham E. P. Histidine residues of zinc ligands in beta-lactamase II. Biochem J. 1978 Nov 1;175(2):441–447. doi: 10.1042/bj1750441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banci L., Bertini I., La Penna G. The enzymatic mechanism of carboxypeptidase: a molecular dynamics study. Proteins. 1994 Feb;18(2):186–197. doi: 10.1002/prot.340180210. [DOI] [PubMed] [Google Scholar]
- Bandoh K., Muto Y., Watanabe K., Katoh N., Ueno K. Biochemical properties and purification of metallo-beta-lactamase from Bacteroides fragilis. Antimicrob Agents Chemother. 1991 Feb;35(2):371–372. doi: 10.1128/aac.35.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bicknell R., Emanuel E. L., Gagnon J., Waley S. G. The production and molecular properties of the zinc beta-lactamase of Pseudomonas maltophilia IID 1275. Biochem J. 1985 Aug 1;229(3):791–797. doi: 10.1042/bj2290791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bicknell R., Knott-Hunziker V., Waley S. G. The pH-dependence of class B and class C beta-lactamases. Biochem J. 1983 Jul 1;213(1):61–66. doi: 10.1042/bj2130061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breslow R., Chin J., Hilvert D., Trainor G. Evidence for the general base mechanism in carboxypeptidase A-catalyzed reactions: partitioning studies on nucleophiles and H2(18)O kinetic isotope effects. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4585–4589. doi: 10.1073/pnas.80.14.4585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carfi A., Pares S., Duée E., Galleni M., Duez C., Frère J. M., Dideberg O. The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 1995 Oct 16;14(20):4914–4921. doi: 10.1002/j.1460-2075.1995.tb00174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carfí A., Paul-Soto R., Martin L., Pétillot Y., Frère J. M., Dideberg O. Purification, crystallization and preliminary X-ray analysis of Bacteroides fragilis Zn2+ beta-lactamase. Acta Crystallogr D Biol Crystallogr. 1997 Jul 1;53(Pt 4):485–487. doi: 10.1107/S0907444997000966. [DOI] [PubMed] [Google Scholar]
- Christianson D. W., David P. R., Lipscomb W. N. Mechanism of carboxypeptidase A: hydration of a ketonic substrate analogue. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1512–1515. doi: 10.1073/pnas.84.6.1512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleland W. W. Determining the chemical mechanisms of enzyme-catalyzed reactions by kinetic studies. Adv Enzymol Relat Areas Mol Biol. 1977;45:273–387. doi: 10.1002/9780470122907.ch4. [DOI] [PubMed] [Google Scholar]
- Concha N. O., Rasmussen B. A., Bush K., Herzberg O. Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure. 1996 Jul 15;4(7):823–836. doi: 10.1016/s0969-2126(96)00089-5. [DOI] [PubMed] [Google Scholar]
- Crowder M. W., Wang Z., Franklin S. L., Zovinka E. P., Benkovic S. J. Characterization of the metal-binding sites of the beta-lactamase from Bacteroides fragilis. Biochemistry. 1996 Sep 17;35(37):12126–12132. doi: 10.1021/bi960976h. [DOI] [PubMed] [Google Scholar]
- Cuchural G. J., Jr, Malamy M. H., Tally F. P. Beta-lactamase-mediated imipenem resistance in Bacteroides fragilis. Antimicrob Agents Chemother. 1986 Nov;30(5):645–648. doi: 10.1128/aac.30.5.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dale J. W., Godwin D., Mossakowska D., Stephenson P., Wall S. Sequence of the OXA2 beta-lactamase: comparison with other penicillin-reactive enzymes. FEBS Lett. 1985 Oct 21;191(1):39–44. doi: 10.1016/0014-5793(85)80989-3. [DOI] [PubMed] [Google Scholar]
- Davies R. B., Abraham E. P. Metal cofactor requirements of beta-lactamase II. Biochem J. 1974 Oct;143(1):129–135. doi: 10.1042/bj1430129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felici A., Amicosante G., Oratore A., Strom R., Ledent P., Joris B., Fanuel L., Frère J. M. An overview of the kinetic parameters of class B beta-lactamases. Biochem J. 1993 Apr 1;291(Pt 1):151–155. doi: 10.1042/bj2910151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hussain M., Carlino A., Madonna M. J., Lampen J. O. Cloning and sequencing of the metallothioprotein beta-lactamase II gene of Bacillus cereus 569/H in Escherichia coli. J Bacteriol. 1985 Oct;164(1):223–229. doi: 10.1128/jb.164.1.223-229.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iaconis J. P., Sanders C. C. Purification and characterization of inducible beta-lactamases in Aeromonas spp. Antimicrob Agents Chemother. 1990 Jan;34(1):44–51. doi: 10.1128/aac.34.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaurin B., Grundström T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4897–4901. doi: 10.1073/pnas.78.8.4897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joris B., Ledent P., Dideberg O., Fonzé E., Lamotte-Brasseur J., Kelly J. A., Ghuysen J. M., Frère J. M. Comparison of the sequences of class A beta-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrob Agents Chemother. 1991 Nov;35(11):2294–2301. doi: 10.1128/aac.35.11.2294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiefer L. L., Fierke C. A. Functional characterization of human carbonic anhydrase II variants with altered zinc binding sites. Biochemistry. 1994 Dec 27;33(51):15233–15240. doi: 10.1021/bi00255a003. [DOI] [PubMed] [Google Scholar]
- Lim H. M., Iyer R. K., Pène J. J. Site-directed mutagenesis of dicarboxylic acids near the active site of Bacillus cereus 5/B/6 beta-lactamase II. Biochem J. 1991 Jun 1;276(Pt 2):401–404. doi: 10.1042/bj2760401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lim H. M., Pène J. J. Mutations affecting the catalytic activity of Bacillus cereus 5/B/6 beta-lactamase II. J Biol Chem. 1989 Jul 15;264(20):11682–11687. [PubMed] [Google Scholar]
- Lim H. M., Pène J. J., Shaw R. W. Cloning, nucleotide sequence, and expression of the Bacillus cereus 5/B/6 beta-lactamase II structural gene. J Bacteriol. 1988 Jun;170(6):2873–2878. doi: 10.1128/jb.170.6.2873-2878.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Little C., Emanuel E. L., Gagnon J., Waley S. G. Identification of an essential glutamic acid residue in beta-lactamase II from Bacillus cereus. Biochem J. 1986 Jan 15;233(2):465–469. doi: 10.1042/bj2330465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massidda O., Rossolini G. M., Satta G. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases. J Bacteriol. 1991 Aug;173(15):4611–4617. doi: 10.1128/jb.173.15.4611-4617.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medeiros A. A. Beta-lactamases. Br Med Bull. 1984 Jan;40(1):18–27. doi: 10.1093/oxfordjournals.bmb.a071942. [DOI] [PubMed] [Google Scholar]
- Mock W. L., Tsay J. T. A probe of the active site acidity of carboxypeptidase A. Biochemistry. 1986 May 20;25(10):2920–2927. doi: 10.1021/bi00358a028. [DOI] [PubMed] [Google Scholar]
- Mock W. L., Tsay J. T. pK values for active site residues of carboxypeptidase A. J Biol Chem. 1988 Jun 25;263(18):8635–8641. [PubMed] [Google Scholar]
- Mustafi D., Makinen M. W. Catalytic conformation of carboxypeptidase A. Structure of a true enzyme reaction intermediate determined by electron nuclear double resonance. J Biol Chem. 1994 Feb 11;269(6):4587–4595. [PubMed] [Google Scholar]
- Osumi A., Rahmo A., King S. W., Przystas T. J., Fife T. H. Substituent effects in the carboxypeptidase A catalyzed hydrolysis of substituted L,beta-phenyllactate esters. Biochemistry. 1994 Dec 13;33(49):14750–14757. doi: 10.1021/bi00253a013. [DOI] [PubMed] [Google Scholar]
- Payne D. J. Metallo-beta-lactamases--a new therapeutic challenge. J Med Microbiol. 1993 Aug;39(2):93–99. doi: 10.1099/00222615-39-2-93. [DOI] [PubMed] [Google Scholar]
- Pocker Y., Bjorkquist D. W. Comparative studies of bovine carbonic anhydrase in H2O and D2O. Stopped-flow studies of the kinetics of interconversion of CO2 and HCO3. Biochemistry. 1977 Dec 27;16(26):5698–5707. doi: 10.1021/bi00645a008. [DOI] [PubMed] [Google Scholar]
- Rasmussen B. A., Gluzman Y., Tally F. P. Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrob Agents Chemother. 1990 Aug;34(8):1590–1592. doi: 10.1128/aac.34.8.1590. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rees D. C., Lewis M., Lipscomb W. N. Refined crystal structure of carboxypeptidase A at 1.54 A resolution. J Mol Biol. 1983 Aug 5;168(2):367–387. doi: 10.1016/s0022-2836(83)80024-2. [DOI] [PubMed] [Google Scholar]
- Suh J., Kaiser E. T. pH dependence of the nitrotyrosine-248 and arsanilazotyrosine-248 carboxypeptidase A catalyzed hydrolysis of O-(trans-p-chlorocinnamoyl)-L-beta-phenyllactate. J Am Chem Soc. 1976 Mar 31;98(7):1940–1947. doi: 10.1021/ja00423a048. [DOI] [PubMed] [Google Scholar]
- Sutton B. J., Artymiuk P. J., Cordero-Borboa A. E., Little C., Phillips D. C., Waley S. G. An X-ray-crystallographic study of beta-lactamase II from Bacillus cereus at 0.35 nm resolution. Biochem J. 1987 Nov 15;248(1):181–188. doi: 10.1042/bj2480181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sykes R. B., Matthew M. The beta-lactamases of gram-negative bacteria and their role in resistance to beta-lactam antibiotics. J Antimicrob Chemother. 1976 Jun;2(2):115–157. doi: 10.1093/jac/2.2.115. [DOI] [PubMed] [Google Scholar]
- Thompson J. S., Malamy M. H. Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus beta-lactamase II. J Bacteriol. 1990 May;172(5):2584–2593. doi: 10.1128/jb.172.5.2584-2593.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiang S., Short S. A., Wolfenden R., Carter C. W., Jr Cytidine deaminase complexed to 3-deazacytidine: a "valence buffer" in zinc enzyme catalysis. Biochemistry. 1996 Feb 6;35(5):1335–1341. doi: 10.1021/bi9525583. [DOI] [PubMed] [Google Scholar]