Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 May 1;331(Pt 3):713–717. doi: 10.1042/bj3310713

Control of growth and differentiation of normal human epithelial cells through the manipulation of reactive nitrogen species.

G Vallette 1, I Tenaud 1, J E Branka 1, A Jarry 1, I Sainte-Marie 1, B Dreno 1, C L Laboisse 1
PMCID: PMC1219409  PMID: 9560296

Abstract

In this work, we addressed the issue of whether exogenous NO and ONOO- (peroxynitrite) are able to alter growth, viability and/or differentiation of normal epithelial cells using cultured normal human keratinocytes as a model. 3-Morpholino-sydnonimine (SIN-1), a donor of both NO and O2(-)., leading to the production of ONOO-, dose-dependently inhibited growth of human keratinocytes without loss of viability. This inhibitory effect was lowered when SIN-1 was transformed into a pure NO donor by scavenging O2(-). with superoxide dismutase/catalase. Finally, scavenging NO release from SIN-1 with carboxy-1H-imidazol-1-yloxy,2-(4-carboxyp henyl)-4,5-dihydro-4,4,5,5 -tetramethyl-3-oxide (PTIO) resulted in a loss of the inhibitory effect of SIN-1. Together these findings suggest that both ONOO- and NO exert a growth inhibitory effect on human keratinocytes without cytotoxicity. Further support for this conclusion came from the treatment of human keratinocytes with the NO. donor propanamine 3-(2-hydroxy-2-nitroso-1-propyl hydrazino) or with authentic peroxynitrite. Moreover, only SIN-1 or peroxynitrite, and not NO, was able to trigger the expression of markers of terminal differentiation in human keratinocytes. From a physiological perspective, the ability of peroxynitrite, a known genotoxic and potentially carcinogenic agent, to direct proliferating keratinocytes towards terminal differentiation may be crucial to protect the genomic stability of this barrier epithelium.

Full Text

The Full Text of this article is available as a PDF (329.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike T., Yoshida M., Miyamoto Y., Sato K., Kohno M., Sasamoto K., Miyazaki K., Ueda S., Maeda H. Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/.NO through a radical reaction. Biochemistry. 1993 Jan 26;32(3):827–832. doi: 10.1021/bi00054a013. [DOI] [PubMed] [Google Scholar]
  2. Ashihara T., Baserga R. Cell synchronization. Methods Enzymol. 1979;58:248–262. doi: 10.1016/s0076-6879(79)58141-5. [DOI] [PubMed] [Google Scholar]
  3. Beckman J. S., Koppenol W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996 Nov;271(5 Pt 1):C1424–C1437. doi: 10.1152/ajpcell.1996.271.5.C1424. [DOI] [PubMed] [Google Scholar]
  4. Becquet F., Courtois Y., Goureau O. Nitric oxide decreases in vitro phagocytosis of photoreceptor outer segments by bovine retinal pigmented epithelial cells. J Cell Physiol. 1994 May;159(2):256–262. doi: 10.1002/jcp.1041590209. [DOI] [PubMed] [Google Scholar]
  5. Boss G. R. cGMP-induced differentiation of the promyelocytic cell line HL-60. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7174–7178. doi: 10.1073/pnas.86.18.7174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deliconstantinos G., Villiotou V., Stavrides J. C. Alterations of nitric oxide synthase and xanthine oxidase activities of human keratinocytes by ultraviolet B radiation. Potential role for peroxynitrite in skin inflammation. Biochem Pharmacol. 1996 Jun 28;51(12):1727–1738. doi: 10.1016/0006-2952(96)00110-4. [DOI] [PubMed] [Google Scholar]
  7. Fuchs E. Epidermal differentiation: the bare essentials. J Cell Biol. 1990 Dec;111(6 Pt 2):2807–2814. doi: 10.1083/jcb.111.6.2807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fukuyama N., Ichimori K., Su Z., Ishida H., Nakazawa H. Peroxynitrite formation from activated human leukocytes. Biochem Biophys Res Commun. 1996 Jul 16;224(2):414–419. doi: 10.1006/bbrc.1996.1041. [DOI] [PubMed] [Google Scholar]
  9. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  10. Heller B., Wang Z. Q., Wagner E. F., Radons J., Bürkle A., Fehsel K., Burkart V., Kolb H. Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J Biol Chem. 1995 May 12;270(19):11176–11180. doi: 10.1074/jbc.270.19.11176. [DOI] [PubMed] [Google Scholar]
  11. Kubes P., Reinhardt P. H., Payne D., Woodman R. C. Excess nitric oxide does not cause cellular, vascular, or mucosal dysfunction in the cat small intestine. Am J Physiol. 1995 Jul;269(1 Pt 1):G34–G41. doi: 10.1152/ajpgi.1995.269.1.G34. [DOI] [PubMed] [Google Scholar]
  12. Kuzin B., Roberts I., Peunova N., Enikolopov G. Nitric oxide regulates cell proliferation during Drosophila development. Cell. 1996 Nov 15;87(4):639–649. doi: 10.1016/s0092-8674(00)81384-7. [DOI] [PubMed] [Google Scholar]
  13. Lipton S. A., Choi Y. B., Pan Z. H., Lei S. Z., Chen H. S., Sucher N. J., Loscalzo J., Singel D. J., Stamler J. S. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature. 1993 Aug 12;364(6438):626–632. doi: 10.1038/364626a0. [DOI] [PubMed] [Google Scholar]
  14. Magrinat G., Mason S. N., Shami P. J., Weinberg J. B. Nitric oxide modulation of human leukemia cell differentiation and gene expression. Blood. 1992 Oct 15;80(8):1880–1884. [PubMed] [Google Scholar]
  15. Ouaaz F., Sola B., Issaly F., Kolb J. P., Davi F., Mentz F., Arock M., Paul-Eugène N., Körner M., Dugas B. Growth arrest and terminal differentiation of leukemic myelomonocytic cells induced through ligation of surface CD23 antigen. Blood. 1994 Nov 1;84(9):3095–3104. [PubMed] [Google Scholar]
  16. Peunova N., Enikolopov G. Nitric oxide triggers a switch to growth arrest during differentiation of neuronal cells. Nature. 1995 May 4;375(6526):68–73. doi: 10.1038/375068a0. [DOI] [PubMed] [Google Scholar]
  17. Pryor W. A., Squadrito G. L. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995 May;268(5 Pt 1):L699–L722. doi: 10.1152/ajplung.1995.268.5.L699. [DOI] [PubMed] [Google Scholar]
  18. Salzman A. L., Menconi M. J., Unno N., Ezzell R. M., Casey D. M., Gonzalez P. K., Fink M. P. Nitric oxide dilates tight junctions and depletes ATP in cultured Caco-2BBe intestinal epithelial monolayers. Am J Physiol. 1995 Feb;268(2 Pt 1):G361–G373. doi: 10.1152/ajpgi.1995.268.2.G361. [DOI] [PubMed] [Google Scholar]
  19. Shami P. J., Weinberg J. B. Differential effects of nitric oxide on erythroid and myeloid colony growth from CD34+ human bone marrow cells. Blood. 1996 Feb 1;87(3):977–982. [PubMed] [Google Scholar]
  20. Szabó C., Cuzzocrea S., Zingarelli B., O'Connor M., Salzman A. L. Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J Clin Invest. 1997 Aug 1;100(3):723–735. doi: 10.1172/JCI119585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Szabó C., Saunders C., O'Connor M., Salzman A. L. Peroxynitrite causes energy depletion and increases permeability via activation of poly (ADP-ribose) synthetase in pulmonary epithelial cells. Am J Respir Cell Mol Biol. 1997 Feb;16(2):105–109. doi: 10.1165/ajrcmb.16.2.9032115. [DOI] [PubMed] [Google Scholar]
  22. Wang Z. Q., Auer B., Stingl L., Berghammer H., Haidacher D., Schweiger M., Wagner E. F. Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev. 1995 Mar 1;9(5):509–520. doi: 10.1101/gad.9.5.509. [DOI] [PubMed] [Google Scholar]
  23. Wiseman H., Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996 Jan 1;313(Pt 1):17–29. doi: 10.1042/bj3130017. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES