Abstract
The murine macrophage cell line J774 was incubated with [35S]sulphate. The cell-associated 35S-labelled macromolecules were shown to be proteoglycans and glycosaminoglycans in similar amounts. The possible presence of cell-surface proteoglycans was investigated by incubating [35S]sulphate-labelled cells with trypsin for 15 min. The released material contained approx. 70% free glycosaminoglycan chains and 30% proteoglycans. The latter component was demonstrated by HNO2 treatment to contain heparan sulphate. In the total cell fraction not treated with trypsin a small but significant portion was shown to be chondroitin sulphate proteoglycan. The cell-associated glycosaminoglycans contained both chondroitin sulphate and heparan sulphate. To investigate possible biological functions of cell-surface proteoglycans in macrophages, cells were incubated with NaClO3 to inhibit sulphation of proteoglycans and beta-d-xyloside to abrogate proteoglycan expression. The uptake of oxidized 125I-tyraminylcellobiose-labelled low-density lipoprotein (125I-TC-LDL) was typically two to three times higher than that of native 125I-TC-LDL in untreated J774 cells. The cellular uptake at 37 degreesC of native 125I-TC-LDL was decreased 25% after both NaClO3 and xyloside treatment, whereas the uptake of oxidized 125I-TC-LDL was decreased 35% after both types of treatment. The mRNA levels for the scavenger receptor A-II and the LDL receptor were not affected by NaClO3 or xyloside treatment. Furthermore, fluid-phase endocytosis, measured as uptake of horseradish peroxidase, and receptor-mediated endocytosis, measured as uptake of 125I-TC-ovalbumin, were not affected by NaClO3 treatment of J774 cells. Removal of cell-surface chondroitin sulphate with chondroitinase ABC decreased only the binding of native 125I-TC-LDL, whereas removal of heparan sulphate with heparitinase decreased the binding of both oxidized and native 125I-TC-LDL. Addition of lipoprotein lipase increased the uptake of oxidized 125I-TC-LDL 1.7 times and the uptake of native 125I-TC-LDL 2.1 times. The binding of the former was more sensitive to NaClO3 treatment than the latter. The results presented support the notion that some of the uptake pathways for lipoproteins in the foam-cell-forming macrophages depend on the presence of cell-surface heparan sulphate and chondroitin sulphate.
Full Text
The Full Text of this article is available as a PDF (593.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baeuerle P. A., Huttner W. B. Chlorate--a potent inhibitor of protein sulfation in intact cells. Biochem Biophys Res Commun. 1986 Dec 15;141(2):870–877. doi: 10.1016/s0006-291x(86)80253-4. [DOI] [PubMed] [Google Scholar]
- Camejo G., Fager G., Rosengren B., Hurt-Camejo E., Bondjers G. Binding of low density lipoproteins by proteoglycans synthesized by proliferating and quiescent human arterial smooth muscle cells. J Biol Chem. 1993 Jul 5;268(19):14131–14137. [PubMed] [Google Scholar]
- Christner J. E. Biosynthesis of chondroitin sulfate proteoglycan by P388D1 macrophage-like cell line. Arteriosclerosis. 1988 Sep-Oct;8(5):535–543. doi: 10.1161/01.atv.8.5.535. [DOI] [PubMed] [Google Scholar]
- Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards I. J., Xu H., Obunike J. C., Goldberg I. J., Wagner W. D. Differentiated macrophages synthesize a heparan sulfate proteoglycan and an oversulfated chondroitin sulfate proteoglycan that bind lipoprotein lipase. Arterioscler Thromb Vasc Biol. 1995 Mar;15(3):400–409. doi: 10.1161/01.atv.15.3.400. [DOI] [PubMed] [Google Scholar]
- Eisenberg S., Sehayek E., Olivecrona T., Vlodavsky I. Lipoprotein lipase enhances binding of lipoproteins to heparan sulfate on cell surfaces and extracellular matrix. J Clin Invest. 1992 Nov;90(5):2013–2021. doi: 10.1172/JCI116081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernández-Borja M., Bellido D., Vilella E., Olivecrona G., Vilaró S. Lipoprotein lipase-mediated uptake of lipoprotein in human fibroblasts: evidence for an LDL receptor-independent internalization pathway. J Lipid Res. 1996 Mar;37(3):464–481. [PubMed] [Google Scholar]
- Fuki I. V., Kuhn K. M., Lomazov I. R., Rothman V. L., Tuszynski G. P., Iozzo R. V., Swenson T. L., Fisher E. A., Williams K. J. The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. J Clin Invest. 1997 Sep 15;100(6):1611–1622. doi: 10.1172/JCI119685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein J. L., Basu S. K., Brunschede G. Y., Brown M. S. Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell. 1976 Jan;7(1):85–95. doi: 10.1016/0092-8674(76)90258-0. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Ho Y. K., Basu S. K., Brown M. S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979 Jan;76(1):333–337. doi: 10.1073/pnas.76.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendriks W. L., van der Boom H., van Vark L. C., Havekes L. M. Lipoprotein lipase stimulates the binding and uptake of moderately oxidized low-density lipoprotein by J774 macrophages. Biochem J. 1996 Mar 1;314(Pt 2):563–568. doi: 10.1042/bj3140563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoogewerf A. J., Cisar L. A., Evans D. C., Bensadoun A. Effect of chlorate on the sulfation of lipoprotein lipase and heparan sulfate proteoglycans. Sulfation of heparan sulfate proteoglycans affects lipoprotein lipase degradation. J Biol Chem. 1991 Sep 5;266(25):16564–16571. [PubMed] [Google Scholar]
- Hurt E., Bondjers G., Camejo G. Interaction of LDL with human arterial proteoglycans stimulates its uptake by human monocyte-derived macrophages. J Lipid Res. 1990 Mar;31(3):443–454. [PubMed] [Google Scholar]
- Jackson R. L., Busch S. J., Cardin A. D. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev. 1991 Apr;71(2):481–539. doi: 10.1152/physrev.1991.71.2.481. [DOI] [PubMed] [Google Scholar]
- Ji Z. S., Brecht W. J., Miranda R. D., Hussain M. M., Innerarity T. L., Mahley R. W. Role of heparan sulfate proteoglycans in the binding and uptake of apolipoprotein E-enriched remnant lipoproteins by cultured cells. J Biol Chem. 1993 May 15;268(14):10160–10167. [PubMed] [Google Scholar]
- Kjellén L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–475. doi: 10.1146/annurev.bi.60.070191.002303. [DOI] [PubMed] [Google Scholar]
- Kjellén L., Oldberg A., Hök M. Cell-surface heparan sulfate. Mechanisms of proteoglycan-cell association. J Biol Chem. 1980 Nov 10;255(21):10407–10413. [PubMed] [Google Scholar]
- Kokkonen J. O., Kovanen P. T. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2287–2291. doi: 10.1073/pnas.84.8.2287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolset S. O., Gallagher J. T. Proteoglycans in haemopoietic cells. Biochim Biophys Acta. 1990 Dec 11;1032(2-3):191–211. doi: 10.1016/0304-419x(90)90004-k. [DOI] [PubMed] [Google Scholar]
- Kolset S. O., Mann D. M., Uhlin-Hansen L., Winberg J. O., Ruoslahti E. Serglycin-binding proteins in activated macrophages and platelets. J Leukoc Biol. 1996 Apr;59(4):545–554. doi: 10.1002/jlb.59.4.545. [DOI] [PubMed] [Google Scholar]
- Kolset S. O. Oversulfated chondroitin sulfate proteoglycan in cultured human peritoneal macrophages. Biochem Biophys Res Commun. 1986 Sep 14;139(2):377–382. doi: 10.1016/s0006-291x(86)80001-8. [DOI] [PubMed] [Google Scholar]
- Kolset S. O., Sakurai K., Ivhed I., Overvatn A., Suzuki S. The effect of beta-D-xylosides on the proliferation and proteoglycan biosynthesis of monoblastic U-937 cells. Biochem J. 1990 Feb 1;265(3):637–645. doi: 10.1042/bj2650637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lugemwa F. N., Esko J. D. Estradiol beta-D-xyloside, an efficient primer for heparan sulfate biosynthesis. J Biol Chem. 1991 Apr 15;266(11):6674–6677. [PubMed] [Google Scholar]
- Mori N., Gotoda T., Ishibashi S., Shimano H., Harada K., Inaba T., Takaku F., Yazaki Y., Yamada N. Effects of human recombinant macrophage colony-stimulating factor on the secretion of lipoprotein lipase from macrophages. Arterioscler Thromb. 1991 Sep-Oct;11(5):1315–1321. doi: 10.1161/01.atv.11.5.1315. [DOI] [PubMed] [Google Scholar]
- Mulder M., Lombardi P., Jansen H., van Berkel T. J., Frants R. R., Havekes L. M. Heparan sulphate proteoglycans are involved in the lipoprotein lipase-mediated enhancement of the cellular binding of very low density and low density lipoproteins. Biochem Biophys Res Commun. 1992 Jun 15;185(2):582–587. doi: 10.1016/0006-291x(92)91664-c. [DOI] [PubMed] [Google Scholar]
- Mulder M., Lombardi P., Jansen H., van Berkel T. J., Frants R. R., Havekes L. M. Low density lipoprotein receptor internalizes low density and very low density lipoproteins that are bound to heparan sulfate proteoglycans via lipoprotein lipase. J Biol Chem. 1993 May 5;268(13):9369–9375. [PubMed] [Google Scholar]
- Naujokas M. F., Morin M., Anderson M. S., Peterson M., Miller J. The chondroitin sulfate form of invariant chain can enhance stimulation of T cell responses through interaction with CD44. Cell. 1993 Jul 30;74(2):257–268. doi: 10.1016/0092-8674(93)90417-o. [DOI] [PubMed] [Google Scholar]
- Obunike J. C., Edwards I. J., Rumsey S. C., Curtiss L. K., Wagner W. D., Deckelbaum R. J., Goldberg I. J. Cellular differences in lipoprotein lipase-mediated uptake of low density lipoproteins. J Biol Chem. 1994 May 6;269(18):13129–13135. [PubMed] [Google Scholar]
- Ottnad E., Parthasarathy S., Sambrano G. R., Ramprasad M. P., Quehenberger O., Kondratenko N., Green S., Steinberg D. A macrophage receptor for oxidized low density lipoprotein distinct from the receptor for acetyl low density lipoprotein: partial purification and role in recognition of oxidatively damaged cells. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1391–1395. doi: 10.1073/pnas.92.5.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owens R. T., Wagner W. D. Proteoglycans produced by cholesterol-enriched macrophages bind plasma low density lipoprotein. Atherosclerosis. 1991 Dec;91(3):229–240. doi: 10.1016/0021-9150(91)90170-8. [DOI] [PubMed] [Google Scholar]
- Palinski W., Rosenfeld M. E., Ylä-Herttuala S., Gurtner G. C., Socher S. S., Butler S. W., Parthasarathy S., Carew T. E., Steinberg D., Witztum J. L. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1372–1376. doi: 10.1073/pnas.86.4.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piepkorn M., Fleckman P., Carney H., Hovingh P., Linker A. The distinctive pattern of proteoglycan and glycosaminoglycan free chain synthesis by cultured human epidermal keratinocytes. J Invest Dermatol. 1990 Jan;94(1):107–113. doi: 10.1111/1523-1747.ep12873970. [DOI] [PubMed] [Google Scholar]
- Piepkorn M., Hovingh P., Linker A. Evidence for independent metabolism and cell surface localization of cell surface localization of cellular proteoglycans and glycosaminoglycan free chains. J Cell Physiol. 1988 May;135(2):189–199. doi: 10.1002/jcp.1041350206. [DOI] [PubMed] [Google Scholar]
- Pittman R. C., Carew T. E., Glass C. K., Green S. R., Taylor C. A., Jr, Attie A. D. A radioiodinated, intracellularly trapped ligand for determining the sites of plasma protein degradation in vivo. Biochem J. 1983 Jun 15;212(3):791–800. doi: 10.1042/bj2120791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenfeld M. E., Carew T. E., von Hodenberg E., Pittman R. C., Ross R., Steinberg D. Autoradiographic analysis of the distribution of 125I-tyramine-cellobiose-LDL in atherosclerotic lesions of the WHHL rabbit. Arterioscler Thromb. 1992 Aug;12(8):985–995. doi: 10.1161/01.atv.12.8.985. [DOI] [PubMed] [Google Scholar]
- Rustan A. C., Halvorsen B., Huggett A. C., Ranheim T., Drevon C. A. Effect of coffee lipids (cafestol and kahweol) on regulation of cholesterol metabolism in HepG2 cells. Arterioscler Thromb Vasc Biol. 1997 Oct;17(10):2140–2149. doi: 10.1161/01.atv.17.10.2140. [DOI] [PubMed] [Google Scholar]
- Sant A. J., Cullen S. E., Giacoletto K. S., Schwartz B. D. Invariant chain is the core protein of the Ia-associated chondroitin sulfate proteoglycan. J Exp Med. 1985 Dec 1;162(6):1916–1934. doi: 10.1084/jem.162.6.1916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shively J. E., Conrad H. E. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry. 1976 Sep 7;15(18):3932–3942. doi: 10.1021/bi00663a005. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med. 1989 Apr 6;320(14):915–924. doi: 10.1056/NEJM198904063201407. [DOI] [PubMed] [Google Scholar]
- Steinbrecher U. P. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem. 1987 Mar 15;262(8):3603–3608. [PubMed] [Google Scholar]
- Suzu S., Inaba T., Yanai N., Kawashima T., Yamada N., Oka T., Machinami R., Ohtsuki T., Kimura F., Kondo S. Proteoglycan form of macrophage colony-stimulating factor binds low density lipoprotein. J Clin Invest. 1994 Oct;94(4):1637–1641. doi: 10.1172/JCI117506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tangirala R. K., Jerome W. G., Jones N. L., Small D. M., Johnson W. J., Glick J. M., Mahlberg F. H., Rothblat G. H. Formation of cholesterol monohydrate crystals in macrophage-derived foam cells. J Lipid Res. 1994 Jan;35(1):93–104. [PubMed] [Google Scholar]
- Uhlin-Hansen L., Kolset S. O. Cell density-dependent expression of chondroitin sulfate proteoglycan in cultured human monocytes. J Biol Chem. 1988 Feb 15;263(5):2526–2531. [PubMed] [Google Scholar]
- Uhlin-Hansen L., Wik T., Kjellén L., Berg E., Forsdahl F., Kolset S. O. Proteoglycan metabolism in normal and inflammatory human macrophages. Blood. 1993 Nov 1;82(9):2880–2889. [PubMed] [Google Scholar]
- Vijayagopal P., Srinivasan S. R., Radhakrishnamurthy B., Berenson G. S. Human monocyte-derived macrophages bind low-density-lipoprotein-proteoglycan complexes by a receptor different from the low-density-lipoprotein receptor. Biochem J. 1993 Feb 1;289(Pt 3):837–844. doi: 10.1042/bj2890837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vijayagopal P., Srinivasan S. R., Xu J. H., Dalferes E. R., Jr, Radhakrishnamurthy B., Berenson G. S. Lipoprotein-proteoglycan complexes induce continued cholesteryl ester accumulation in foam cells from rabbit atherosclerotic lesions. J Clin Invest. 1993 Mar;91(3):1011–1018. doi: 10.1172/JCI116257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeaman C., Rapraeger A. C. Membrane-anchored proteoglycans of mouse macrophages: P388D1 cells express a syndecan-4-like heparan sulfate proteoglycan and a distinct chondroitin sulfate form. J Cell Physiol. 1993 Nov;157(2):413–425. doi: 10.1002/jcp.1041570226. [DOI] [PubMed] [Google Scholar]
- Yeaman C., Rapraeger A. C. Post-transcriptional regulation of syndecan-1 expression by cAMP in peritoneal macrophages. J Cell Biol. 1993 Aug;122(4):941–950. doi: 10.1083/jcb.122.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]