Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 May 1;331(Pt 3):763–766. doi: 10.1042/bj3310763

Functional consequences of relocating the C-terminal calmodulin-binding autoinhibitory domains of the plasma membrane Ca2+ pump near the N-terminus.

H P Adamo 1, M E Grimaldi 1
PMCID: PMC1219415  PMID: 9560302

Abstract

A mutant of the plasma membrane Ca2+ pump (PMCA) called (nCI)hPMCA4b(ct120), in which the C-terminal regulatory segment including the calmodulin-binding autoinhibitory domains C and I had been relocated near the N-terminus, has been expressed in COS-1 cells. The measurements of Ca2+ transport in microsomal preparations showed that the rearranged enzyme was functional. The activity of the (nCI)hPMCA4b(ct120) mutant was compared with those of the wild-type hPMCA4b and the fully active calmodulin-insensitive mutant hPMCA4b(ct120). In the absence of calmodulin the activity of (nCI)hPMCA4b(ct120) was higher than that of hPMCA4b but only 45% of that of hPMCA4b(ct120). Mutant (nCI)hPMCA4b(ct120) exhibited an apparent affinity for Ca2+ similar to that of hPMCA4b, typical of the inhibited state of the enzyme. Calmodulin at concentrations that fully activated hPMCA4b increased the activity of (nCI)hPMCA4b(ct120) to 68% of that of hPMCA4b(ct120). The lower maximal activity of (nCI)hPMCA4b(ct120) was not due to a lower affinity for calmodulin because the concentration of calmodulin required for half-maximal activation of (nCI)hPMCA4b(ct120) was equal to that of the wild-type hPMCA4b. These results indicate that (1) the disturbance of the N-terminal region of the PMCA by the insertion of the C-terminal segment decreased the ability of the pump to transport Ca2+, and (2) the calmodulin-binding autoinhibitory domain was still able to access its acceptor site from the N-terminal end of the molecule. However, although the calmodulin-binding and inhibitory functions of the C-domain were fully preserved, the I domain at its new position seemed less effective at inhibiting the pump.

Full Text

The Full Text of this article is available as a PDF (263.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamo H. P., Verma A. K., Sanders M. A., Heim R., Salisbury J. L., Wieben E. D., Penniston J. T. Overexpression of the erythrocyte plasma membrane Ca2+ pump in COS-1 cells. Biochem J. 1992 Aug 1;285(Pt 3):791–797. doi: 10.1042/bj2850791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carafoli E. Biogenesis: plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J. 1994 Oct;8(13):993–1002. [PubMed] [Google Scholar]
  3. Caride A. J., Filoteo A. G., Enyedi A., Verma A. K., Penniston J. T. Detection of isoform 4 of the plasma membrane calcium pump in human tissues by using isoform-specific monoclonal antibodies. Biochem J. 1996 May 15;316(Pt 1):353–359. doi: 10.1042/bj3160353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Enyedi A., Verma A. K., Filoteo A. G., Penniston J. T. A highly active 120-kDa truncated mutant of the plasma membrane Ca2+ pump. J Biol Chem. 1993 May 15;268(14):10621–10626. [PubMed] [Google Scholar]
  5. Enyedi A., Verma A. K., Filoteo A. G., Penniston J. T. Protein kinase C activates the plasma membrane Ca2+ pump isoform 4b by phosphorylation of an inhibitory region downstream of the calmodulin-binding domain. J Biol Chem. 1996 Dec 13;271(50):32461–32467. doi: 10.1074/jbc.271.50.32461. [DOI] [PubMed] [Google Scholar]
  6. Enyedi A., Vorherr T., James P., McCormick D. J., Filoteo A. G., Carafoli E., Penniston J. T. The calmodulin binding domain of the plasma membrane Ca2+ pump interacts both with calmodulin and with another part of the pump. J Biol Chem. 1989 Jul 25;264(21):12313–12321. [PubMed] [Google Scholar]
  7. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  8. Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981 Jan;23(1):175–182. doi: 10.1016/0092-8674(81)90282-8. [DOI] [PubMed] [Google Scholar]
  9. Gonzalez A. L., Joly E. A simple procedure to increase efficiency of DEAE-dextran transfection of COS cells. Trends Genet. 1995 Jun;11(6):216–217. doi: 10.1016/s0168-9525(00)89051-4. [DOI] [PubMed] [Google Scholar]
  10. Grimaldi M. E., Adamo H. P., Rega A. F., Penniston J. T. Deletion of amino acid residues 18-75 inactivates the plasma membrane Ca2+ pump. J Biol Chem. 1996 Oct 25;271(43):26995–26997. doi: 10.1074/jbc.271.43.26995. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Magocsi M., Penniston J. T. Oxytocin pretreatment of pregnant rat uterus inhibits Ca2+ uptake in plasma membrane and sarcoplasmic reticulum. Biochim Biophys Acta. 1991 Mar 18;1063(1):7–14. doi: 10.1016/0005-2736(91)90346-a. [DOI] [PubMed] [Google Scholar]
  13. Malmström S., Askerlund P., Palmgren M. G. A calmodulin-stimulated Ca2+-ATPase from plant vacuolar membranes with a putative regulatory domain at its N-terminus. FEBS Lett. 1997 Jan 6;400(3):324–328. doi: 10.1016/s0014-5793(96)01448-2. [DOI] [PubMed] [Google Scholar]
  14. Soderling T. R. Protein kinases. Regulation by autoinhibitory domains. J Biol Chem. 1990 Feb 5;265(4):1823–1826. [PubMed] [Google Scholar]
  15. Verma A. K., Enyedi A., Filoteo A. G., Penniston J. T. Regulatory region of plasma membrane Ca2+ pump. 28 residues suffice to bind calmodulin but more are needed for full auto-inhibition of the activity. J Biol Chem. 1994 Jan 21;269(3):1687–1691. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES