Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 May 1;331(Pt 3):815–820. doi: 10.1042/bj3310815

Somatotropin-dependent decrease in fatty acid synthase mRNA abundance in 3T3-F442A adipocytes is the result of a decrease in both gene transcription and mRNA stability.

D Yin 1, S D Clarke 1, J L Peters 1, T D Etherton 1
PMCID: PMC1219422  PMID: 9560309

Abstract

Somatotropin (ST) markedly decreases lipogenesis, fatty acid synthase (FAS) enzyme activity and mRNA abundance in pig adipocytes. The present study was conducted to determine whether the decrease in FAS mRNA in 3T3-F442A adipocytes was the result of a decrease in transcription of the FAS gene and/or a change in FAS mRNA stability. Insulin increased the abundance of FAS mRNA 2-13-fold and fatty acid synthesis 3-7-fold. Somatotropin decreased the stimulatory effect of insulin on the abundance of FAS mRNA and lipogenesis by 40-70% and 20-60% respectively. Subsequent run-on analyses demonstrated that the decrease observed in FAS mRNA in response to ST was associated with an 82% decrease in transcription; ST significantly shortened the half-life of FAS mRNA from 35 to 11 h. To corroborate the run-on analyses, cells were stably transfected with a pFAS-CAT5 (in which CAT stands for chloramphenicol acetyltransferase) reporter construct that contained 2195 bp of the 5' flanking region of the rat FAS gene. Insulin treatment increased FAS-CAT activity 4.7-fold. When ST was added to the insulin-containing medium there was an approx. 60% reduction in FAS-CAT activity. In summary, our results indicate that ST decreases FAS mRNA levels and that this is the result of a marked decrease in both transcription of the FAS gene and stability of the FAS mRNA.

Full Text

The Full Text of this article is available as a PDF (257.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argetsinger L. S., Hsu G. W., Myers M. G., Jr, Billestrup N., White M. F., Carter-Su C. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1. J Biol Chem. 1995 Jun 16;270(24):14685–14692. doi: 10.1074/jbc.270.24.14685. [DOI] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Clarke S. D. Regulation of fatty acid synthase gene expression: an approach for reducing fat accumulation. J Anim Sci. 1993 Jul;71(7):1957–1965. doi: 10.2527/1993.7171957x. [DOI] [PubMed] [Google Scholar]
  4. Djian P., Phillips M., Green H. The activation of specific gene transcription in the adipose conversion of 3T3 cells. J Cell Physiol. 1985 Sep;124(3):554–556. doi: 10.1002/jcp.1041240327. [DOI] [PubMed] [Google Scholar]
  5. Donkin S. S., Chiu P. Y., Yin D., Louveau I., Swencki B., Vockroth J., Evock-Clover C. M., Peters J. L., Etherton T. D. Porcine somatotrophin differentially down-regulates expression of the GLUT4 and fatty acid synthase genes in pig adipose tissue. J Nutr. 1996 Oct;126(10):2568–2577. doi: 10.1093/jn/126.10.2568. [DOI] [PubMed] [Google Scholar]
  6. Donkin S. S., McNall A. D., Swencki B. S., Peters J. L., Etherton T. D. The growth hormone-dependent decrease in hepatic fatty acid synthase mRNA is the result of a decrease in gene transcription. J Mol Endocrinol. 1996 Apr;16(2):151–158. doi: 10.1677/jme.0.0160151. [DOI] [PubMed] [Google Scholar]
  7. Dunshea F. R., Harris D. M., Bauman D. E., Boyd R. D., Bell A. W. Effect of porcine somatotropin on in vivo glucose kinetics and lipogenesis in growing pigs. J Anim Sci. 1992 Jan;70(1):141–151. doi: 10.2527/1992.701141x. [DOI] [PubMed] [Google Scholar]
  8. Foster C. M., Hale P. M., Jing H. W., Schwartz J. Effects of human growth hormone on insulin-stimulated glucose metabolism in 3T3-F442A adipocytes. Endocrinology. 1988 Aug;123(2):1082–1088. doi: 10.1210/endo-123-2-1082. [DOI] [PubMed] [Google Scholar]
  9. Harris D. M., Dunshea F. R., Bauman D. E., Boyd R. D., Wang S. Y., Johnson P. A., Clarke S. D. Effect of in vivo somatotropin treatment of growing pigs on adipose tissue lipogenesis. J Anim Sci. 1993 Dec;71(12):3293–3300. doi: 10.2527/1993.71123293x. [DOI] [PubMed] [Google Scholar]
  10. Hillgartner F. B., Salati L. M., Goodridge A. G. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol Rev. 1995 Jan;75(1):47–76. doi: 10.1152/physrev.1995.75.1.47. [DOI] [PubMed] [Google Scholar]
  11. Hotamisligil G. S., Peraldi P., Budavari A., Ellis R., White M. F., Spiegelman B. M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996 Feb 2;271(5249):665–668. doi: 10.1126/science.271.5249.665. [DOI] [PubMed] [Google Scholar]
  12. Kanety H., Feinstein R., Papa M. Z., Hemi R., Karasik A. Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem. 1995 Oct 6;270(40):23780–23784. doi: 10.1074/jbc.270.40.23780. [DOI] [PubMed] [Google Scholar]
  13. Magri K. A., Adamo M., Leroith D., Etherton T. D. The inhibition of insulin action and glucose metabolism by porcine growth hormone in porcine adipocytes is not the result of any decrease in insulin binding or insulin receptor kinase activity. Biochem J. 1990 Feb 15;266(1):107–113. doi: 10.1042/bj2660107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mildner A. M., Clarke S. D. Porcine fatty acid synthase: cloning of a complementary DNA, tissue distribution of its mRNA and suppression of expression by somatotropin and dietary protein. J Nutr. 1991 Jun;121(6):900–907. doi: 10.1093/jn/121.6.900. [DOI] [PubMed] [Google Scholar]
  15. Moustaïd N., Beyer R. S., Sul H. S. Identification of an insulin response element in the fatty acid synthase promoter. J Biol Chem. 1994 Feb 25;269(8):5629–5634. [PubMed] [Google Scholar]
  16. Moustaïd N., Sakamoto K., Clarke S., Beyer R. S., Sul H. S. Regulation of fatty acid synthase gene transcription. Sequences that confer a positive insulin effect and differentiation-dependent expression in 3T3-L1 preadipocytes are present in the 332 bp promoter. Biochem J. 1993 Jun 15;292(Pt 3):767–772. doi: 10.1042/bj2920767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nordeen S. K., Green P. P., 3rd, Fowlkes D. M. A rapid, sensitive, and inexpensive assay for chloramphenicol acetyltransferase. DNA. 1987 Apr;6(2):173–178. doi: 10.1089/dna.1987.6.173. [DOI] [PubMed] [Google Scholar]
  18. Paulauskis J. D., Sul H. S. Hormonal regulation of mouse fatty acid synthase gene transcription in liver. J Biol Chem. 1989 Jan 5;264(1):574–577. [PubMed] [Google Scholar]
  19. Ram P. A., Park S. H., Choi H. K., Waxman D. J. Growth hormone activation of Stat 1, Stat 3, and Stat 5 in rat liver. Differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation. J Biol Chem. 1996 Mar 8;271(10):5929–5940. doi: 10.1074/jbc.271.10.5929. [DOI] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schwartz J. Growth hormone directly alters glucose utilization in 3T3 adipocytes. Biochem Biophys Res Commun. 1984 Nov 30;125(1):237–243. doi: 10.1016/s0006-291x(84)80359-9. [DOI] [PubMed] [Google Scholar]
  22. Semenkovich C. F., Coleman T., Goforth R. Physiologic concentrations of glucose regulate fatty acid synthase activity in HepG2 cells by mediating fatty acid synthase mRNA stability. J Biol Chem. 1993 Apr 5;268(10):6961–6970. [PubMed] [Google Scholar]
  23. Silverman M. S., Mynarcik D. C., Corin R. E., Haspel H. C., Sonenberg M. Antagonism by growth hormone of insulin-sensitive hexose transport in 3T3-F442A adipocytes. Endocrinology. 1989 Nov;125(5):2600–2604. doi: 10.1210/endo-125-5-2600. [DOI] [PubMed] [Google Scholar]
  24. Tai P. K., Liao J. F., Chen E. H., Dietz J., Schwartz J., Carter-Su C. Differential regulation of two glucose transporters by chronic growth hormone treatment of cultured 3T3-F442A adipose cells. J Biol Chem. 1990 Dec 15;265(35):21828–21834. [PubMed] [Google Scholar]
  25. Wakil S. J., Stoops J. K., Joshi V. C. Fatty acid synthesis and its regulation. Annu Rev Biochem. 1983;52:537–579. doi: 10.1146/annurev.bi.52.070183.002541. [DOI] [PubMed] [Google Scholar]
  26. Walton P. E., Etherton T. D., Chung C. S. Exogenous pituitary and recombinant growth hormones induce insulin and insulin-like growth factor 1 resistance in pig adipose tissue. Domest Anim Endocrinol. 1987 Jul;4(3):183–189. doi: 10.1016/0739-7240(87)90014-2. [DOI] [PubMed] [Google Scholar]
  27. Wang D., Sul H. S. Upstream stimulatory factors bind to insulin response sequence of the fatty acid synthase promoter. USF1 is regulated. J Biol Chem. 1995 Dec 1;270(48):28716–28722. doi: 10.1074/jbc.270.48.28716. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES