Abstract
We have used two hydroxylated naphthoquinol menaquinol analogues, reduced plumbagin (PBH2, 5-hydroxy-2-methyl-1,4-naphthoquinol) and reduced lapachol [LPCH2, 2-hydroxy-3-(3-methyl-2-butenyl)-1, 4-naphthoquinol], as substrates for Escherichia coli anaerobic reductases. These compounds have optical, solubility and redox properties that make them suitable for use in studies of the enzymology of menaquinol oxidation. Oxidized plumbagin and oxidized lapachol have well resolved absorbances at 419 nm (epsilon=3.95 mM-1. cm-1) and 481 nm (epsilon=2.66 mM-1.cm-1) respectively (in Mops/KOH buffer, pH 7.0). PBH2 is a good substrate for nitrate reductase A (Km=282+/-28 microM, kcat=120+/-6 s-1) and fumarate reductase (Km=155+/-24 microM, kcat=30+/-2 s-1), but not for DMSO reductase. LPCH2 is a good substrate for nitrate reductase A (Km=57+/-35 microM, kcat=68+/-13 s-1), fumarate reductase (Km=85+/-27 microM, kcat=74+/-6 s-1) and DMSO reductase (Km=238+/-30 microM, kcat=191+/-21 s-1). The sensitivity of enzymic LPCH2 and PBH2 oxidation to 2-n-heptyl-4-hydroxyquinoline N-oxide inhibition is consistent with their oxidation occurring at sites of physiological quinol binding.
Full Text
The Full Text of this article is available as a PDF (439.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Augier V., Asso M., Guigliarelli B., More C., Bertrand P., Santini C. L., Blasco F., Chippaux M., Giordano G. Removal of the high-potential [4Fe-4S] center of the beta-subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of site-directed mutated enzymes. Biochemistry. 1993 May 18;32(19):5099–5108. doi: 10.1021/bi00070a018. [DOI] [PubMed] [Google Scholar]
- Augier V., Guigliarelli B., Asso M., Bertrand P., Frixon C., Giordano G., Chippaux M., Blasco F. Site-directed mutagenesis of conserved cysteine residues within the beta subunit of Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of the mutated enzymes. Biochemistry. 1993 Mar 2;32(8):2013–2023. doi: 10.1021/bi00059a018. [DOI] [PubMed] [Google Scholar]
- Blasco F., Iobbi C., Giordano G., Chippaux M., Bonnefoy V. Nitrate reductase of Escherichia coli: completion of the nucleotide sequence of the nar operon and reassessment of the role of the alpha and beta subunits in iron binding and electron transfer. Mol Gen Genet. 1989 Aug;218(2):249–256. doi: 10.1007/BF00331275. [DOI] [PubMed] [Google Scholar]
- Cammack R., Weiner J. H. Electron paramagnetic resonance spectroscopic characterization of dimethyl sulfoxide reductase of Escherichia coli. Biochemistry. 1990 Sep 11;29(36):8410–8416. doi: 10.1021/bi00488a030. [DOI] [PubMed] [Google Scholar]
- Cecchini G., Sices H., Schröder I., Gunsalus R. P. Aerobic inactivation of fumarate reductase from Escherichia coli by mutation of the [3Fe-4S]-quinone binding domain. J Bacteriol. 1995 Aug;177(16):4587–4592. doi: 10.1128/jb.177.16.4587-4592.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole S. T., Condon C., Lemire B. D., Weiner J. H. Molecular biology, biochemistry and bioenergetics of fumarate reductase, a complex membrane-bound iron-sulfur flavoenzyme of Escherichia coli. Biochim Biophys Acta. 1985 Dec;811(4):381–403. doi: 10.1016/0304-4173(85)90008-4. [DOI] [PubMed] [Google Scholar]
- Condon C., Weiner J. H. Fumarate reductase of Escherichia coli: an investigation of function and assembly using in vivo complementation. Mol Microbiol. 1988 Jan;2(1):43–52. doi: 10.1111/j.1365-2958.1988.tb00005.x. [DOI] [PubMed] [Google Scholar]
- Farr S. B., Natvig D. O., Kogoma T. Toxicity and mutagenicity of plumbagin and the induction of a possible new DNA repair pathway in Escherichia coli. J Bacteriol. 1985 Dec;164(3):1309–1316. doi: 10.1128/jb.164.3.1309-1316.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fato R., Castelluccio C., Palmer G., Lenaz G. A simple method for the determination of the kinetic constants of membrane enzymes utilizing hydrophobic substrates: ubiquinol cytochrome c reductase. Biochim Biophys Acta. 1988 Feb 11;932(2):216–222. doi: 10.1016/0005-2728(88)90158-2. [DOI] [PubMed] [Google Scholar]
- Guigliarelli B., Asso M., More C., Augier V., Blasco F., Pommier J., Giordano G., Bertrand P. EPR and redox characterization of iron-sulfur centers in nitrate reductases A and Z from Escherichia coli. Evidence for a high-potential and a low-potential class and their relevance in the electron-transfer mechanism. Eur J Biochem. 1992 Jul 1;207(1):61–68. doi: 10.1111/j.1432-1033.1992.tb17020.x. [DOI] [PubMed] [Google Scholar]
- Guigliarelli B., Magalon A., Asso M., Bertrand P., Frixon C., Giordano G., Blasco F. Complete coordination of the four Fe-S centers of the beta subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of site-directed mutants lacking the highest or lowest potential [4Fe-4S] clusters. Biochemistry. 1996 Apr 16;35(15):4828–4836. doi: 10.1021/bi952459p. [DOI] [PubMed] [Google Scholar]
- Hassan H. M., Fridovich I. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys. 1979 Sep;196(2):385–395. doi: 10.1016/0003-9861(79)90289-3. [DOI] [PubMed] [Google Scholar]
- Imlay J., Fridovich I. Exogenous quinones directly inhibit the respiratory NADH dehydrogenase in Escherichia coli. Arch Biochem Biophys. 1992 Jul;296(1):337–346. doi: 10.1016/0003-9861(92)90581-g. [DOI] [PubMed] [Google Scholar]
- Kowal A. T., Werth M. T., Manodori A., Cecchini G., Schröder I., Gunsalus R. P., Johnson M. K. Effect of cysteine to serine mutations on the properties of the [4Fe-4S] center in Escherichia coli fumarate reductase. Biochemistry. 1995 Sep 26;34(38):12284–12293. doi: 10.1021/bi00038a024. [DOI] [PubMed] [Google Scholar]
- Kröger A., Winkler E., Innerhofer A., Hackenberg H., Schägger H. The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes. Eur J Biochem. 1979 Mar;94(2):465–475. doi: 10.1111/j.1432-1033.1979.tb12914.x. [DOI] [PubMed] [Google Scholar]
- Lemire B. D., Robinson J. J., Weiner J. H. Identification of membrane anchor polypeptides of Escherichia coli fumarate reductase. J Bacteriol. 1982 Dec;152(3):1126–1131. doi: 10.1128/jb.152.3.1126-1131.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemma E., Hägerhäll C., Geisler V., Brandt U., von Jagow G., Kröger A. Reactivity of the Bacillus subtilis succinate dehydrogenase complex with quinones. Biochim Biophys Acta. 1991 Sep 13;1059(3):281–285. doi: 10.1016/s0005-2728(05)80213-0. [DOI] [PubMed] [Google Scholar]
- Lemma E., Unden G., Kröger A. Menaquinone is an obligatory component of the chain catalyzing succinate respiration in Bacillus subtilis. Arch Microbiol. 1990;155(1):62–67. doi: 10.1007/BF00291276. [DOI] [PubMed] [Google Scholar]
- Magalon A., Rothery R. A., Giordano G., Blasco F., Weiner J. H. Characterization by electron paramagnetic resonance of the role of the Escherichia coli nitrate reductase (NarGHI) iron-sulfur clusters in electron transfer to nitrate and identification of a semiquinone radical intermediate. J Bacteriol. 1997 Aug;179(16):5037–5045. doi: 10.1128/jb.179.16.5037-5045.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manodori A., Cecchini G., Schröder I., Gunsalus R. P., Werth M. T., Johnson M. K. [3Fe-4S] to [4Fe-4S] cluster conversion in Escherichia coli fumarate reductase by site-directed mutagenesis. Biochemistry. 1992 Mar 17;31(10):2703–2712. doi: 10.1021/bi00125a010. [DOI] [PubMed] [Google Scholar]
- Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
- Morpeth F. F., Boxer D. H. Kinetic analysis of respiratory nitrate reductase from Escherichia coli K12. Biochemistry. 1985 Jan 1;24(1):40–46. doi: 10.1021/bi00322a007. [DOI] [PubMed] [Google Scholar]
- Musser S. M., Stowell M. H., Lee H. K., Rumbley J. N., Chan S. I. Uncompetitive substrate inhibition and noncompetitive inhibition by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) and 2-n-nonyl-4-hydroxyquinoline-N-oxide (NQNO) is observed for the cytochrome bo3 complex: implications for a Q(H2)-loop proton translocation mechanism. Biochemistry. 1997 Jan 28;36(4):894–902. doi: 10.1021/bi961723r. [DOI] [PubMed] [Google Scholar]
- Pascal M. C., Burini J. F., Ratouchniak J., Chippaux M. Regulation of the nitrate reductase operon: effect of mutations in chlA, B, D and E genes. Mol Gen Genet. 1982;188(1):103–106. doi: 10.1007/BF00333001. [DOI] [PubMed] [Google Scholar]
- Paulsen K. E., Stankovich M. T., Orville A. M. Electron paramagnetic resonance spectroelectrochemical titration. Methods Enzymol. 1993;227:396–411. doi: 10.1016/0076-6879(93)27016-a. [DOI] [PubMed] [Google Scholar]
- Rothery R. A., Weiner J. H. Alteration of the iron-sulfur cluster composition of Escherichia coli dimethyl sulfoxide reductase by site-directed mutagenesis. Biochemistry. 1991 Aug 27;30(34):8296–8305. doi: 10.1021/bi00098a003. [DOI] [PubMed] [Google Scholar]
- Rothery R. A., Weiner J. H. Interaction of an engineered [3Fe-4S] cluster with a menaquinol binding site of Escherichia coli DMSO reductase. Biochemistry. 1996 Mar 12;35(10):3247–3257. doi: 10.1021/bi951584y. [DOI] [PubMed] [Google Scholar]
- Simala-Grant J. L., Weiner J. H. Kinetic analysis and substrate specificity of Escherichia coli dimethyl sulfoxide reductase. Microbiology. 1996 Nov;142(Pt 11):3231–3239. doi: 10.1099/13500872-142-11-3231. [DOI] [PubMed] [Google Scholar]
- Simpkin D., Ingledew W. J. Location of the catalytic site of the respiratory fumarate reductase of Escherichia coli. J Gen Microbiol. 1984 Nov;130(11):2851–2855. doi: 10.1099/00221287-130-11-2851. [DOI] [PubMed] [Google Scholar]
- Trieber C. A., Rothery R. A., Weiner J. H. Consequences of removal of a molybdenum ligand (DmsA-Ser-176) of Escherichia coli dimethyl sulfoxide reductase. J Biol Chem. 1996 Nov 1;271(44):27339–27345. doi: 10.1074/jbc.271.44.27339. [DOI] [PubMed] [Google Scholar]
- Trieber C. A., Rothery R. A., Weiner J. H. Engineering a novel iron-sulfur cluster into the catalytic subunit of Escherichia coli dimethyl-sulfoxide reductase. J Biol Chem. 1996 Mar 1;271(9):4620–4626. doi: 10.1074/jbc.271.9.4620. [DOI] [PubMed] [Google Scholar]
- Trieber C. A., Rothery R. A., Weiner J. H. Multiple pathways of electron transfer in dimethyl sulfoxide reductase of Escherichia coli. J Biol Chem. 1994 Mar 11;269(10):7103–7109. [PubMed] [Google Scholar]
- Unden G., Hackenberg H., Kröger A. Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vibrio succinogenes. Biochim Biophys Acta. 1980 Jul 8;591(2):275–288. doi: 10.1016/0005-2728(80)90159-0. [DOI] [PubMed] [Google Scholar]
- Unden G., Kröger A. Reconstitution of a functional electron-transfer chain from purified formate dehydrogenase and fumarate reductase complexes. Methods Enzymol. 1986;126:387–399. doi: 10.1016/s0076-6879(86)26039-5. [DOI] [PubMed] [Google Scholar]
- Van Hellemond J. J., Tielens A. G. Expression and functional properties of fumarate reductase. Biochem J. 1994 Dec 1;304(Pt 2):321–331. doi: 10.1042/bj3040321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace B. J., Young I. G. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant. Biochim Biophys Acta. 1977 Jul 7;461(1):84–100. doi: 10.1016/0005-2728(77)90071-8. [DOI] [PubMed] [Google Scholar]
- Weiner J. H., MacIsaac D. P., Bishop R. E., Bilous P. T. Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity. J Bacteriol. 1988 Apr;170(4):1505–1510. doi: 10.1128/jb.170.4.1505-1510.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiner J. H., Rothery R. A., Sambasivarao D., Trieber C. A. Molecular analysis of dimethylsulfoxide reductase: a complex iron-sulfur molybdoenzyme of Escherichia coli. Biochim Biophys Acta. 1992 Aug 28;1102(1):1–18. doi: 10.1016/0005-2728(92)90059-b. [DOI] [PubMed] [Google Scholar]
- Werth M. T., Cecchini G., Manodori A., Ackrell B. A., Schröder I., Gunsalus R. P., Johnson M. K. Site-directed mutagenesis of conserved cysteine residues in Escherichia coli fumarate reductase: modification of the spectroscopic and electrochemical properties of the [2Fe-2S] cluster. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8965–8969. doi: 10.1073/pnas.87.22.8965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westenberg D. J., Gunsalus R. P., Ackrell B. A., Cecchini G. Electron transfer from menaquinol to fumarate. Fumarate reductase anchor polypeptide mutants of Escherichia coli. J Biol Chem. 1990 Nov 15;265(32):19560–19567. [PubMed] [Google Scholar]
- Westenberg D. J., Gunsalus R. P., Ackrell B. A., Sices H., Cecchini G. Escherichia coli fumarate reductase frdC and frdD mutants. Identification of amino acid residues involved in catalytic activity with quinones. J Biol Chem. 1993 Jan 15;268(2):815–822. [PubMed] [Google Scholar]
- Wissenbach U., Kröger A., Unden G. The specific functions of menaquinone and demethylmenaquinone in anaerobic respiration with fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate by Escherichia coli. Arch Microbiol. 1990;154(1):60–66. doi: 10.1007/BF00249179. [DOI] [PubMed] [Google Scholar]
- Yankovskaya V., Sablin S. O., Ramsay R. R., Singer T. P., Ackrell B. A., Cecchini G., Miyoshi H. Inhibitor probes of the quinone binding sites of mammalian complex II and Escherichia coli fumarate reductase. J Biol Chem. 1996 Aug 30;271(35):21020–21024. doi: 10.1074/jbc.271.35.21020. [DOI] [PubMed] [Google Scholar]