Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 May 15;332(Pt 1):67–74. doi: 10.1042/bj3320067

Structural and spectroscopic studies of azide complexes of horse heart myoglobin and the His-64-->Thr variant.

R Maurus 1, R Bogumil 1, N T Nguyen 1, A G Mauk 1, G Brayer 1
PMCID: PMC1219452  PMID: 9576852

Abstract

The high-resolution X-ray crystallographic structures of horse heart azidometmyoglobin complexes of the wild-type protein and the His-64-->Thr variant have been determined to 2.0 and 1.8 A respectively. Azide binds to wild-type metmyoglobin in a bent configuration with an Fe-N-1-N-3 angle of 119 degrees and is oriented into the distal crevice in the direction of Ile-107. The proximity of the His-64 NE2 atom to the N-1 atom of the bound azide indicates stabilization of the ligand by the His-64 side chain through hydrogen bonding. In addition, structural characterization of wild-type horse heart azidometmyoglobin establishes that the only structural change induced by ligand binding is a small movement of the Leu-29 side chain away from the azide ligand. EPR and Fourier transform infrared spectroscopy were used to characterize the myoglobin azide complexes further. EPR spectroscopy revealed that, in contrast with wild-type azidometmyoglobin, two slightly different low-spin species are formed by azide bound to the His-64-->Thr variant both in solution and in a polycrystalline sample. One of these low-spin species has a greater relative intensity, with g values very similar to those of the azide complex of the wild-type protein. These EPR results together with structural information on this variant indicate the presence of two distinct conformations of bound azide, with one form predominating. The major conformation is comparable to that formed by wild-type myoglobin in which azide is oriented into the distal crevice. In the minor conformation the azide is oriented towards the exterior of the protein.

Full Text

The Full Text of this article is available as a PDF (520.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi S., Sunohara N., Ishimori K., Morishima I. Structure and ligand binding properties of leucine 29(B10) mutants of human myoglobin. J Biol Chem. 1992 Jun 25;267(18):12614–12621. [PubMed] [Google Scholar]
  2. Allocatelli C. T., Cutruzzolà F., Brancaccio A., Brunori M., Qin J., La Mar G. N. Structural and functional characterization of sperm whale myoglobin mutants: role of arginine (E10) in ligand stabilization. Biochemistry. 1993 Jun 15;32(23):6041–6049. doi: 10.1021/bi00074a015. [DOI] [PubMed] [Google Scholar]
  3. Balasubramanian S., Lambright D. G., Boxer S. G. Perturbations of the distal heme pocket in human myoglobin mutants probed by infrared spectroscopy of bound CO: correlation with ligand binding kinetics. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4718–4722. doi: 10.1073/pnas.90.10.4718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biram D., Garratt C. J., Hester R. E. Ligand affinities in mutant metmyoglobins. Biochim Biophys Acta. 1993 Apr 21;1163(1):67–74. doi: 10.1016/0167-4838(93)90280-5. [DOI] [PubMed] [Google Scholar]
  5. Biram D., Hester R. E. Resonance Raman spectroscopic studies of ligated mutant myoglobins. Biochim Biophys Acta. 1994 Feb 16;1204(2):207–216. doi: 10.1016/0167-4838(94)90010-8. [DOI] [PubMed] [Google Scholar]
  6. Bogumil R., Hunter C. L., Maurus R., Tang H. L., Lee H., Lloyd E., Brayer G. D., Smith M., Mauk A. G. FTIR analysis of the interaction of azide with horse heart myoglobin variants. Biochemistry. 1994 Jun 21;33(24):7600–7608. doi: 10.1021/bi00190a013. [DOI] [PubMed] [Google Scholar]
  7. Bogumil R., Maurus R., Hildebrand D. P., Brayer G. D., Mauk A. G. Origin of the pH-dependent spectroscopic properties of pentacoordinate metmyoglobin variants. Biochemistry. 1995 Aug 22;34(33):10483–10490. doi: 10.1021/bi00033a021. [DOI] [PubMed] [Google Scholar]
  8. Brancaccio A., Cutruzzolá F., Allocatelli C. T., Brunori M., Smerdon S. J., Wilkinson A. J., Dou Y., Keenan D., Ikeda-Saito M., Brantley R. E., Jr Structural factors governing azide and cyanide binding to mammalian metmyoglobins. J Biol Chem. 1994 May 13;269(19):13843–13853. [PubMed] [Google Scholar]
  9. Bujons J., Dikiy A., Ferrer J. C., Banci L., Mauk A. G. Charge reversal of a critical active-site residue of cytochrome-c peroxidase: characterization of the Arg48-->Glu variant. Eur J Biochem. 1997 Jan 15;243(1-2):72–84. doi: 10.1111/j.1432-1033.1997.72_1a.x. [DOI] [PubMed] [Google Scholar]
  10. Conti E., Moser C., Rizzi M., Mattevi A., Lionetti C., Coda A., Ascenzi P., Brunori M., Bolognesi M. X-ray crystal structure of ferric Aplysia limacina myoglobin in different liganded states. J Mol Biol. 1993 Oct 5;233(3):498–508. doi: 10.1006/jmbi.1993.1527. [DOI] [PubMed] [Google Scholar]
  11. Cutruzzolà F., Allocatelli C. T., Ascenzi P., Bolognesi M., Sligar S. G., Brunori M. Control and recognition of anionic ligands in myoglobin. FEBS Lett. 1991 May 6;282(2):281–284. doi: 10.1016/0014-5793(91)80495-o. [DOI] [PubMed] [Google Scholar]
  12. Deatherage J. F., Obendorf S. K., Moffat K. Structure of azide methemoglobin. J Mol Biol. 1979 Nov 5;134(3):419–429. doi: 10.1016/0022-2836(79)90361-9. [DOI] [PubMed] [Google Scholar]
  13. Evans S. V., Brayer G. D. High-resolution study of the three-dimensional structure of horse heart metmyoglobin. J Mol Biol. 1990 Jun 20;213(4):885–897. doi: 10.1016/S0022-2836(05)80270-0. [DOI] [PubMed] [Google Scholar]
  14. Ferrer J. C., Turano P., Banci L., Bertini I., Morris I. K., Smith K. M., Smith M., Mauk A. G. Active site coordination chemistry of the cytochrome c peroxidase Asp235Ala variant: spectroscopic and functional characterization. Biochemistry. 1994 Jun 28;33(25):7819–7829. doi: 10.1021/bi00191a009. [DOI] [PubMed] [Google Scholar]
  15. Guillemette J. G., Matsushima-Hibiya Y., Atkinson T., Smith M. Expression in Escherichia coli of a synthetic gene coding for horse heart myoglobin. Protein Eng. 1991 Jun;4(5):585–592. doi: 10.1093/protein/4.5.585. [DOI] [PubMed] [Google Scholar]
  16. Huang X., Boxer S. G. Discovery of new ligand binding pathways in myoglobin by random mutagenesis. Nat Struct Biol. 1994 Apr;1(4):226–229. doi: 10.1038/nsb0494-226. [DOI] [PubMed] [Google Scholar]
  17. Ikeda-Saito M., Hori H., Andersson L. A., Prince R. C., Pickering I. J., George G. N., Sanders C. R., 2nd, Lutz R. S., McKelvey E. J., Mattera R. Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants. J Biol Chem. 1992 Nov 15;267(32):22843–22852. [PubMed] [Google Scholar]
  18. Lambright D. G., Balasubramanian S., Decatur S. M., Boxer S. G. Anatomy and dynamics of a ligand-binding pathway in myoglobin: the roles of residues 45, 60, 64, and 68. Biochemistry. 1994 May 10;33(18):5518–5525. doi: 10.1021/bi00184a021. [DOI] [PubMed] [Google Scholar]
  19. Li T., Quillin M. L., Phillips G. N., Jr, Olson J. S. Structural determinants of the stretching frequency of CO bound to myoglobin. Biochemistry. 1994 Feb 15;33(6):1433–1446. doi: 10.1021/bi00172a021. [DOI] [PubMed] [Google Scholar]
  20. Lloyd E., Mauk A. G. Formation of sulphmyoglobin during expression of horse heart myoglobin in Escherichia coli. FEBS Lett. 1994 Mar 7;340(3):281–286. doi: 10.1016/0014-5793(94)80154-1. [DOI] [PubMed] [Google Scholar]
  21. Mattevi A., Gatti G., Coda A., Rizzi M., Ascenzi P., Brunori M., Bolognesi M. Binding mode of azide to ferric Aplysia limacina myoglobin. Crystallographic analysis at 1.9 A resolution. J Mol Recognit. 1991 Feb;4(1):1–6. doi: 10.1002/jmr.300040102. [DOI] [PubMed] [Google Scholar]
  22. Maurus R., Overall C. M., Bogumil R., Luo Y., Mauk A. G., Smith M., Brayer G. D. A myoglobin variant with a polar substitution in a conserved hydrophobic cluster in the heme binding pocket. Biochim Biophys Acta. 1997 Aug 15;1341(1):1–13. doi: 10.1016/s0167-4838(97)00064-2. [DOI] [PubMed] [Google Scholar]
  23. Morikis D., Champion P. M., Springer B. A., Sligar S. G. Resonance raman investigations of site-directed mutants of myoglobin: effects of distal histidine replacement. Biochemistry. 1989 May 30;28(11):4791–4800. doi: 10.1021/bi00437a041. [DOI] [PubMed] [Google Scholar]
  24. Perutz M. F., Mathews F. S. An x-ray study of azide methaemoglobin. J Mol Biol. 1966 Oct 28;21(1):199–202. doi: 10.1016/0022-2836(66)90088-x. [DOI] [PubMed] [Google Scholar]
  25. Perutz M. F. Myoglobin and haemoglobin: role of distal residues in reactions with haem ligands. Trends Biochem Sci. 1989 Feb;14(2):42–44. doi: 10.1016/0968-0004(89)90039-x. [DOI] [PubMed] [Google Scholar]
  26. Qin J., La Mar G. N., Ascoli F., Bolognesi M., Brunori M. Solution 1H nuclear magnetic resonance determination of hydrogen bonding of the E10 (66) Arg side-chain to the bound ligand in Aplysia cyano-met myoglobin. J Mol Biol. 1992 Apr 20;224(4):891–897. doi: 10.1016/0022-2836(92)90456-t. [DOI] [PubMed] [Google Scholar]
  27. Quillin M. L., Arduini R. M., Olson J. S., Phillips G. N., Jr High-resolution crystal structures of distal histidine mutants of sperm whale myoglobin. J Mol Biol. 1993 Nov 5;234(1):140–155. doi: 10.1006/jmbi.1993.1569. [DOI] [PubMed] [Google Scholar]
  28. Rohlfs R. J., Mathews A. J., Carver T. E., Olson J. S., Springer B. A., Egeberg K. D., Sligar S. G. The effects of amino acid substitution at position E7 (residue 64) on the kinetics of ligand binding to sperm whale myoglobin. J Biol Chem. 1990 Feb 25;265(6):3168–3176. [PubMed] [Google Scholar]
  29. STRYER L., KENDREW J. C., WATSON H. C. THE MODE OF ATTACHMENT OF THE AZIDE ION TO SPERM WHALE METMYOGLOBIN. J Mol Biol. 1964 Jan;8:96–104. doi: 10.1016/s0022-2836(64)80152-2. [DOI] [PubMed] [Google Scholar]
  30. Smerdon S. J., Krzywda S., Brzozowski A. M., Davies G. J., Wilkinson A. J., Brancaccio A., Cutruzzolá F., Allocatelli C. T., Brunori M., Li T. Interactions among residues CD3, E7, E10, and E11 in myoglobins: attempts to simulate the ligand-binding properties of Aplysia myoglobin. Biochemistry. 1995 Jul 11;34(27):8715–8725. doi: 10.1021/bi00027a022. [DOI] [PubMed] [Google Scholar]
  31. Sono M., Dawson J. H. Formation of low spin complexes of ferric cytochrome P-450-CAM with anionic ligands. Spin state and ligand affinity comparison to myoglobin. J Biol Chem. 1982 May 25;257(10):5496–5502. [PubMed] [Google Scholar]
  32. Thériault Y., Pochapsky T. C., Dalvit C., Chiu M. L., Sligar S. G., Wright P. E. 1H and 15N resonance assignments and secondary structure of the carbon monoxide complex of sperm whale myoglobin. J Biomol NMR. 1994 Jul;4(4):491–504. doi: 10.1007/BF00156616. [DOI] [PubMed] [Google Scholar]
  33. Turano P., Ferrer J. C., Cheesman M. R., Thomson A. J., Banci L., Bertini I., Mauk A. G. pH, electrolyte, and substrate-linked variation in active site structure of the Trp51Ala variant of cytochrome c peroxidase. Biochemistry. 1995 Oct 24;34(42):13895–13905. doi: 10.1021/bi00042a022. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES