Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 May 15;332(Pt 1):81–89. doi: 10.1042/bj3320081

Spectrin self-association site: characterization and study of beta-spectrin mutations associated with hereditary elliptocytosis.

G Nicolas 1, S Pedroni 1, C Fournier 1, H Gautero 1, C Craescu 1, D Dhermy 1, M C Lecomte 1
PMCID: PMC1219454  PMID: 9576854

Abstract

Most of hereditary elliptocytosis (HE) cases are related to a spectrin dimer (SpD) self-association defect. The severity of haemolysis is correlated with the extent of the SpD self-association defect, which itself depends on the location of the mutation regarding the tetramerization site. This site is presumed to involve the first C helix of the alpha chain and the last two helices, A and B, of the beta chain to reconstitute a triple helical structure (A, B and C), as observed along spectrin. Using recombinant peptides, we demonstrated that the first C helix of the alpha chain and the last two helices of the beta chain alone are not sufficient to establish interactions, which only occurred when a complete triple-helical repeat was added to each partner. One adjacent repeat is necessary to stabilize the conformation of both N- and C-terminal structures directly involved in the interaction site and is sufficient to generate a binding affinity similar to that observed in the native molecule. Producing peptides carrying a betaHE mutation, we reproduced the tetramerization defect as observed in patients. Therefore, the betaW2024R and betaW2061R mutations, which replace the invariant tryptophan and a residue located in the hydrophobic core, respectively, affect alpha-beta interactions considerably. In contrast, the betaA2013V mutation, which modifies a residue located outside any presumed interacting regions, has a minor effect on the interaction.

Full Text

The Full Text of this article is available as a PDF (735.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DeSilva T. M., Peng K. C., Speicher K. D., Speicher D. W. Analysis of human red cell spectrin tetramer (head-to-head) assembly using complementary univalent peptides. Biochemistry. 1992 Nov 10;31(44):10872–10878. doi: 10.1021/bi00159a030. [DOI] [PubMed] [Google Scholar]
  2. Deng H., Lee J. K., Goldstein L. S., Branton D. Drosophila development requires spectrin network formation. J Cell Biol. 1995 Jan;128(1-2):71–79. doi: 10.1083/jcb.128.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Glele-Kakai C., Garbarz M., Lecomte M. C., Leborgne S., Galand C., Bournier O., Devaux I., Gautero H., Zohoun I., Gallagher P. G. Epidemiological studies of spectrin mutations related to hereditary elliptocytosis and spectrin polymorphisms in Benin. Br J Haematol. 1996 Oct;95(1):57–66. doi: 10.1046/j.1365-2141.1996.d01-1869.x. [DOI] [PubMed] [Google Scholar]
  4. Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
  5. Johnson W. C., Jr Protein secondary structure and circular dichroism: a practical guide. Proteins. 1990;7(3):205–214. doi: 10.1002/prot.340070302. [DOI] [PubMed] [Google Scholar]
  6. Kennedy S. P., Weed S. A., Forget B. G., Morrow J. S. A partial structural repeat forms the heterodimer self-association site of all beta-spectrins. J Biol Chem. 1994 Apr 15;269(15):11400–11408. [PubMed] [Google Scholar]
  7. Kotula L., DeSilva T. M., Speicher D. W., Curtis P. J. Functional characterization of recombinant human red cell alpha-spectrin polypeptides containing the tetramer binding site. J Biol Chem. 1993 Jul 15;268(20):14788–14793. [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Lecomte M. C., Garbarz M., Gautero H., Bournier O., Galand C., Boivin P., Dhermy D. Molecular basis of clinical and morphological heterogeneity in hereditary elliptocytosis (HE) with spectrin alpha I variants. Br J Haematol. 1993 Nov;85(3):584–595. doi: 10.1111/j.1365-2141.1993.tb03352.x. [DOI] [PubMed] [Google Scholar]
  10. Lecomte M. C., Gautero H., Garbarz M., Boivin P., Dhermy D. Abnormal tryptic peptide from the spectrin alpha-chain resulting from alpha- or beta-chain mutations: two genetically distinct forms of the Sp alpha I/74 variant. Br J Haematol. 1990 Nov;76(3):406–413. doi: 10.1111/j.1365-2141.1990.tb06376.x. [DOI] [PubMed] [Google Scholar]
  11. MacDonald R. I., Musacchio A., Holmgren R. A., Saraste M. Invariant tryptophan at a shielded site promotes folding of the conformational unit of spectrin. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1299–1303. doi: 10.1073/pnas.91.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nicolas G., Pedroni S., Fournier C., Gautero H., Lecomte M. C. Method of site-directed mutagenesis using long primer-unique site elimination and exonuclease III. Biotechniques. 1997 Mar;22(3):430–434. doi: 10.2144/97223bm11. [DOI] [PubMed] [Google Scholar]
  13. Palek J., Jarolim P. Clinical expression and laboratory detection of red blood cell membrane protein mutations. Semin Hematol. 1993 Oct;30(4):249–283. [PubMed] [Google Scholar]
  14. Parquet N., Devaux I., Boulanger L., Galand C., Boivin P., Lecomte M. C., Dhermy D., Garbarz M. Identification of three novel spectrin alpha I/74 mutations in hereditary elliptocytosis: further support for a triple-stranded folding unit model of the spectrin heterodimer contact site. Blood. 1994 Jul 1;84(1):303–308. [PubMed] [Google Scholar]
  15. Pascual J., Pfuhl M., Rivas G., Pastore A., Saraste M. The spectrin repeat folds into a three-helix bundle in solution. FEBS Lett. 1996 Apr 1;383(3):201–207. doi: 10.1016/0014-5793(96)00251-7. [DOI] [PubMed] [Google Scholar]
  16. Pothier B., Alloisio N., Maréchal J., Morlé L., Ducluzeau M. T., Caldani C., Philippe N., Delaunay J. Assignment of Sp alpha I/74 hereditary elliptocytosis to the alpha- or beta-chain of spectrin through in vitro dimer reconstitution. Blood. 1990 May 15;75(10):2061–2069. [PubMed] [Google Scholar]
  17. Ray F. A., Nickoloff J. A. Site-specific mutagenesis of almost any plasmid using a PCR-based version of unique site elimination. Biotechniques. 1992 Sep;13(3):342–348. [PubMed] [Google Scholar]
  18. Sahr K. E., Laurila P., Kotula L., Scarpa A. L., Coupal E., Leto T. L., Linnenbach A. J., Winkelmann J. C., Speicher D. W., Marchesi V. T. The complete cDNA and polypeptide sequences of human erythroid alpha-spectrin. J Biol Chem. 1990 Mar 15;265(8):4434–4443. [PubMed] [Google Scholar]
  19. Speicher D. W., DeSilva T. M., Speicher K. D., Ursitti J. A., Hembach P., Weglarz L. Location of the human red cell spectrin tetramer binding site and detection of a related "closed" hairpin loop dimer using proteolytic footprinting. J Biol Chem. 1993 Feb 25;268(6):4227–4235. [PubMed] [Google Scholar]
  20. Speicher D. W., Marchesi V. T. Erythrocyte spectrin is comprised of many homologous triple helical segments. Nature. 1984 Sep 13;311(5982):177–180. doi: 10.1038/311177a0. [DOI] [PubMed] [Google Scholar]
  21. Tse W. T., Lecomte M. C., Costa F. F., Garbarz M., Feo C., Boivin P., Dhermy D., Forget B. G. Point mutation in the beta-spectrin gene associated with alpha I/74 hereditary elliptocytosis. Implications for the mechanism of spectrin dimer self-association. J Clin Invest. 1990 Sep;86(3):909–916. doi: 10.1172/JCI114792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wilmotte R., Maréchal J., Morlé L., Baklouti F., Philippe N., Kastally R., Kotula L., Delaunay J., Alloisio N. Low expression allele alpha LELY of red cell spectrin is associated with mutations in exon 40 (alpha V/41 polymorphism) and intron 45 and with partial skipping of exon 46. J Clin Invest. 1993 May;91(5):2091–2096. doi: 10.1172/JCI116432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Winkelmann J. C., Chang J. G., Tse W. T., Scarpa A. L., Marchesi V. T., Forget B. G. Full-length sequence of the cDNA for human erythroid beta-spectrin. J Biol Chem. 1990 Jul 15;265(20):11827–11832. [PubMed] [Google Scholar]
  24. Winograd E., Hume D., Branton D. Phasing the conformational unit of spectrin. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10788–10791. doi: 10.1073/pnas.88.23.10788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yan Y., Winograd E., Viel A., Cronin T., Harrison S. C., Branton D. Crystal structure of the repetitive segments of spectrin. Science. 1993 Dec 24;262(5142):2027–2030. doi: 10.1126/science.8266097. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES