Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 May 15;332(Pt 1):119–125. doi: 10.1042/bj3320119

Functional studies of the rabbit intestinal Na+/glucose carrier (SGLT1) expressed in COS-7 cells: evaluation of the mutant A166C indicates this region is important for Na+-activation of the carrier.

S Vayro 1, B Lo 1, M Silverman 1
PMCID: PMC1219459  PMID: 9576859

Abstract

We have exploited two mutants of the rabbit intestinal Na+/glucose carrier SGLT1 to explore the structure/function relationship of this Na+/glucose transporter in COS-7 cells. A functional N-terminal myc-epitope-tagged SGLT1 protein was constructed and used to determine the plasma-membrane localization of SGLT1. The kinetic and specificity characteristics of the myc-tagged SGLT1 mutant were identical with those of wild-type SGLT1. Immunogold labelling and electron microscopy confirmed the topology of the N-terminal region to be extracellular. Expression of the SGLT1 A166C mutant in these cells showed diminished levels of Na+-dependent alpha-methyl-d-glucopyranoside transport activity compared with wild-type SGLT1. For SGLT1 A166C, Vmax was 0.92+/-0.08 nmol/min per mg of protein and Km was 0.98+/-0.13 mM; for wild-type SGLT1, Vmax was 1.98+/-0.47 nmol/min per mg of protein and Km was 0.36+/-0.16 mM. Significantly, phlorrhizin (phloridzin) binding experiments confirmed equal expression of Na+-dependent high-affinity phlorrhizin binding to COS-7 cells expressing SGLT1 A166C or wild-type SGLT1 (Bmax 1.55+/-0.18 and 1.69+/-0.57 pmol/mg of protein respectively); Kd values were 0.46+/-0.15 and 0.51+/-0.11 microM for SGLT1 A166C and wild-type SGLT1 respectively. The specificity of sugar interaction was unchanged by the A166C mutation. We conclude that the replacement of an alanine residue by cysteine at position 166 has a profound effect on transporter function, resulting in a decrease in transporter turnover rate by a factor of 2. Taken as a whole the functional changes observed by SGLT1 A166C are most consistent with the mutation having caused an altered Na+ interaction with the transporter.

Full Text

The Full Text of this article is available as a PDF (407.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akabas M. H., Karlin A. Identification of acetylcholine receptor channel-lining residues in the M1 segment of the alpha-subunit. Biochemistry. 1995 Oct 3;34(39):12496–12500. doi: 10.1021/bi00039a002. [DOI] [PubMed] [Google Scholar]
  2. Birnir B., Lee H. S., Hediger M. A., Wright E. M. Expression and characterization of the intestinal Na+/glucose cotransporter in COS-7 cells. Biochim Biophys Acta. 1990 Jan 30;1048(1):100–104. doi: 10.1016/0167-4781(90)90028-z. [DOI] [PubMed] [Google Scholar]
  3. Chen S., Hartmann H. A., Kirsch G. E. Cysteine mapping in the ion selectivity and toxin binding region of the cardiac Na+ channel pore. J Membr Biol. 1997 Jan 1;155(1):11–25. doi: 10.1007/s002329900154. [DOI] [PubMed] [Google Scholar]
  4. Diedrich D. F. Photoaffinity-labeling analogs of phlorizin and phloretin: synthesis and effects on cell membranes. Methods Enzymol. 1990;191:755–780. doi: 10.1016/0076-6879(90)91046-9. [DOI] [PubMed] [Google Scholar]
  5. Evan G. I., Lewis G. K., Ramsay G., Bishop J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. doi: 10.1128/mcb.5.12.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Foong L. Y., You S., Jaikaran D. C., Zhang Z., Zunic V., Woolley G. A. Development of a novel thiol reagent for probing ion channel structure: studies in a model system. Biochemistry. 1997 Feb 11;36(6):1343–1348. doi: 10.1021/bi9624907. [DOI] [PubMed] [Google Scholar]
  7. Gloor S., Pongs O., Schmalzing G. A vector for the synthesis of cRNAs encoding Myc epitope-tagged proteins in Xenopus laevis oocytes. Gene. 1995 Jul 28;160(2):213–217. doi: 10.1016/0378-1119(95)00226-v. [DOI] [PubMed] [Google Scholar]
  8. Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
  9. Holmgren M., Liu Y., Xu Y., Yellen G. On the use of thiol-modifying agents to determine channel topology. Neuropharmacology. 1996;35(7):797–804. doi: 10.1016/0028-3908(96)00129-3. [DOI] [PubMed] [Google Scholar]
  10. Javitch J. A., Fu D., Chen J. Differentiating dopamine D2 ligands by their sensitivities to modification of the cysteine exposed in the binding-site crevice. Mol Pharmacol. 1996 Apr;49(4):692–698. [PubMed] [Google Scholar]
  11. Javitch J. A., Fu D., Chen J. Residues in the fifth membrane-spanning segment of the dopamine D2 receptor exposed in the binding-site crevice. Biochemistry. 1995 Dec 19;34(50):16433–16439. doi: 10.1021/bi00050a026. [DOI] [PubMed] [Google Scholar]
  12. Kimmich G. A. Membrane potentials and the mechanism of intestinal Na(+)-dependent sugar transport. J Membr Biol. 1990 Mar;114(1):1–27. doi: 10.1007/BF01869381. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lo B., Silverman M. Replacement of Ala-166 with cysteine in the high affinity rabbit sodium/glucose transporter alters transport kinetics and allows methanethiosulfonate ethylamine to inhibit transporter function. J Biol Chem. 1998 Jan 9;273(2):903–909. doi: 10.1074/jbc.273.2.903. [DOI] [PubMed] [Google Scholar]
  15. Martín M. G., Turk E., Lostao M. P., Kerner C., Wright E. M. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat Genet. 1996 Feb;12(2):216–220. doi: 10.1038/ng0296-216. [DOI] [PubMed] [Google Scholar]
  16. Moran A., Davis L. J., Turner R. J. High affinity phlorizin binding to the LLC-PK1 cells exhibits a sodium:phlorizin stoichiometry of 2:1. J Biol Chem. 1988 Jan 5;263(1):187–192. [PubMed] [Google Scholar]
  17. Panayotova-Heiermann M., Eskandari S., Turk E., Zampighi G. A., Wright E. M. Five transmembrane helices form the sugar pathway through the Na+/glucose cotransporter. J Biol Chem. 1997 Aug 15;272(33):20324–20327. doi: 10.1074/jbc.272.33.20324. [DOI] [PubMed] [Google Scholar]
  18. Panayotova-Heiermann M., Loo D. D., Kong C. T., Lever J. E., Wright E. M. Sugar binding to Na+/glucose cotransporters is determined by the carboxyl-terminal half of the protein. J Biol Chem. 1996 Apr 26;271(17):10029–10034. doi: 10.1074/jbc.271.17.10029. [DOI] [PubMed] [Google Scholar]
  19. Panayotova-Heiermann M., Loo D. D., Lostao M. P., Wright E. M. Sodium/D-glucose cotransporter charge movements involve polar residues. J Biol Chem. 1994 Aug 19;269(33):21016–21020. [PubMed] [Google Scholar]
  20. Parent L., Supplisson S., Loo D. D., Wright E. M. Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. J Membr Biol. 1992 Jan;125(1):49–62. doi: 10.1007/BF00235797. [DOI] [PubMed] [Google Scholar]
  21. Parent L., Supplisson S., Loo D. D., Wright E. M. Electrogenic properties of the cloned Na+/glucose cotransporter: II. A transport model under nonrapid equilibrium conditions. J Membr Biol. 1992 Jan;125(1):63–79. doi: 10.1007/BF00235798. [DOI] [PubMed] [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Swick A. G., Janicot M., Cheneval-Kastelic T., McLenithan J. C., Lane M. D. Promoter-cDNA-directed heterologous protein expression in Xenopus laevis oocytes. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1812–1816. doi: 10.1073/pnas.89.5.1812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Turk E., Kerner C. J., Lostao M. P., Wright E. M. Membrane topology of the human Na+/glucose cotransporter SGLT1. J Biol Chem. 1996 Jan 26;271(4):1925–1934. doi: 10.1074/jbc.271.4.1925. [DOI] [PubMed] [Google Scholar]
  25. Turner J. R., Lencer W. I., Carlson S., Madara J. L. Carboxy-terminal vesicular stomatitis virus G protein-tagged intestinal Na+-dependent glucose cotransporter (SGLT1): maintenance of surface expression and global transport function with selective perturbation of transport kinetics and polarized expression. J Biol Chem. 1996 Mar 29;271(13):7738–7744. doi: 10.1074/jbc.271.13.7738. [DOI] [PubMed] [Google Scholar]
  26. Wright E. M., Loo D. D., Panayotova-Heiermann M., Lostao M. P., Hirayama B. H., Mackenzie B., Boorer K., Zampighi G. 'Active' sugar transport in eukaryotes. J Exp Biol. 1994 Nov;196:197–212. doi: 10.1242/jeb.196.1.197. [DOI] [PubMed] [Google Scholar]
  27. Wright E. M. The intestinal Na+/glucose cotransporter. Annu Rev Physiol. 1993;55:575–589. doi: 10.1146/annurev.ph.55.030193.003043. [DOI] [PubMed] [Google Scholar]
  28. Yau C., Rao L., Silverman M. Sugar uptake into a primary culture of dog kidney proximal tubular cells. Can J Physiol Pharmacol. 1985 May;63(5):417–426. doi: 10.1139/y85-073. [DOI] [PubMed] [Google Scholar]
  29. Zampighi G. A., Kreman M., Boorer K. J., Loo D. D., Bezanilla F., Chandy G., Hall J. E., Wright E. M. A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes. J Membr Biol. 1995 Nov;148(1):65–78. doi: 10.1007/BF00234157. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES