Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 May 15;332(Pt 1):223–230. doi: 10.1042/bj3320223

Enzyme-mediated cytosine deamination by the bacterial methyltransferase M.MspI.

J M Zingg 1, J C Shen 1, P A Jones 1
PMCID: PMC1219471  PMID: 9576871

Abstract

Most prokaryotic (cytosine-5)-DNA methyltransferases increase the frequency of deamination at the cytosine targeted for methylation in vitro in the absence of the cofactor S-adenosylmethionine (AdoMet) or the reaction product S-adenosylhomocysteine (AdoHcy). We show here that, under the same in vitro conditions, the prokaryotic methyltransferase, M.MspI (from Moraxella sp.), causes very few cytosine deaminations, suggesting a mechanism in which M.MspI may avoid enzyme-mediated cytosine deamination. Two analogues of AdoMet, sinefungin and 5'-amino-5'-deoxyadenosine, greatly increased the frequency of cytosine deamination mediated by M.MspI presumably by introducing a proton-donating amino group into the catalytic centre, thus facilitating the formation of an unstable enzyme-dihydrocytosine intermediate and hydrolytic deamination. Interestingly, two naturally occurring analogues, adenosine and 5'-methylthio-5'-deoxyadenosine, which do not contain a proton-donating amino group, also weakly increased the deamination frequency by M.MspI, even in the presence of AdoMet or AdoHcy. These analogues may trigger a conformational change in the enzyme without completely inhibiting the access of solvent water to the catalytic centre, thus allowing hydrolytic deamination of the enzyme-dihydrocytosine intermediate. Under normal physiological conditions the enzymes M.HpaII (from Haemophilus parainfluenzae), M. HhaI (from Haemophilus hemolytica) and M.MspI all increased the in vivo deamination frequency at the target cytosines with comparable efficiency.

Full Text

The Full Text of this article is available as a PDF (462.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandaru B., Gopal J., Bhagwat A. S. Overproduction of DNA cytosine methyltransferases causes methylation and C --> T mutations at non-canonical sites. J Biol Chem. 1996 Mar 29;271(13):7851–7859. doi: 10.1074/jbc.271.13.7851. [DOI] [PubMed] [Google Scholar]
  2. Bandaru B., Wyszynski M., Bhagwat A. S. HpaII methyltransferase is mutagenic in Escherichia coli. J Bacteriol. 1995 May;177(10):2950–2952. doi: 10.1128/jb.177.10.2950-2952.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beletskii A., Bhagwat A. S. Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13919–13924. doi: 10.1073/pnas.93.24.13919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bergerat A., Guschlbauer W., Fazakerley G. V. Allosteric and catalytic binding of S-adenosylmethionine to Escherichia coli DNA adenine methyltransferase monitored by 3H NMR. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6394–6397. doi: 10.1073/pnas.88.15.6394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bontemps F., Vincent M. F., Van den Berghe G. Mechanisms of elevation of adenosine levels in anoxic hepatocytes. Biochem J. 1993 Mar 15;290(Pt 3):671–677. doi: 10.1042/bj2900671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper D. N., Gerber-Huber S. DNA methylation and CpG suppression. Cell Differ. 1985 Sep;17(3):199–205. doi: 10.1016/0045-6039(85)90488-9. [DOI] [PubMed] [Google Scholar]
  7. Cooper D. N., Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988 Feb;78(2):151–155. doi: 10.1007/BF00278187. [DOI] [PubMed] [Google Scholar]
  8. Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. doi: 10.1038/274775a0. [DOI] [PubMed] [Google Scholar]
  9. Dubey A. K., Mollet B., Roberts R. J. Purification and characterization of the MspI DNA methyltransferase cloned and overexpressed in E. coli. Nucleic Acids Res. 1992 Apr 11;20(7):1579–1585. doi: 10.1093/nar/20.7.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dubey A. K., Roberts R. J. Sequence-specific DNA binding by the MspI DNA methyltransferase. Nucleic Acids Res. 1992 Jun 25;20(12):3167–3173. doi: 10.1093/nar/20.12.3167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duker N. J., Jensen D. E., Hart D. M., Fishbein D. E. Perturbations of enzymic uracil excision due to purine damage in DNA. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4878–4882. doi: 10.1073/pnas.79.16.4878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duncan B. K., Miller J. H. Mutagenic deamination of cytosine residues in DNA. Nature. 1980 Oct 9;287(5782):560–561. doi: 10.1038/287560a0. [DOI] [PubMed] [Google Scholar]
  13. Eftedal I., Guddal P. H., Slupphaug G., Volden G., Krokan H. E. Consensus sequences for good and poor removal of uracil from double stranded DNA by uracil-DNA glycosylase. Nucleic Acids Res. 1993 May 11;21(9):2095–2101. doi: 10.1093/nar/21.9.2095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ehrlich M., Norris K. F., Wang R. Y., Kuo K. C., Gehrke C. W. DNA cytosine methylation and heat-induced deamination. Biosci Rep. 1986 Apr;6(4):387–393. doi: 10.1007/BF01116426. [DOI] [PubMed] [Google Scholar]
  15. Ford K., Taylor C., Connolly B., Hornby D. P. Effects of co-factor and deoxycytidine substituted oligonucleotides upon sequence-specific interactions between MspI DNA methyltransferase and DNA. J Mol Biol. 1993 Apr 5;230(3):779–786. doi: 10.1006/jmbi.1993.1200. [DOI] [PubMed] [Google Scholar]
  16. Frederico L. A., Kunkel T. A., Shaw B. R. A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry. 1990 Mar 13;29(10):2532–2537. doi: 10.1021/bi00462a015. [DOI] [PubMed] [Google Scholar]
  17. Frostesjö L., Holm I., Grahn B., Page A. W., Bestor T. H., Heby O. Interference with DNA methyltransferase activity and genome methylation during F9 teratocarcinoma stem cell differentiation induced by polyamine depletion. J Biol Chem. 1997 Feb 14;272(7):4359–4366. doi: 10.1074/jbc.272.7.4359. [DOI] [PubMed] [Google Scholar]
  18. Gonzalgo M. L., Jones P. A. Mutagenic and epigenetic effects of DNA methylation. Mutat Res. 1997 Apr;386(2):107–118. doi: 10.1016/s1383-5742(96)00047-6. [DOI] [PubMed] [Google Scholar]
  19. Gordee R. S., Butler T. F. A9145, a new adenine-containing antifungal antibiotic. II. Biological activity. J Antibiot (Tokyo) 1973 Aug;26(8):466–470. doi: 10.7164/antibiotics.26.466. [DOI] [PubMed] [Google Scholar]
  20. Hamedani M. P., Valkó K., Qi X., Welham K. J., Gibbons W. A. Two-dimensional high-performance liquid chromatographic method for assaying S-adenosyl-L-methionine and its related metabolites in tissues. J Chromatogr. 1993 Sep 22;619(2):191–198. doi: 10.1016/0378-4347(93)80108-g. [DOI] [PubMed] [Google Scholar]
  21. Hamil R. L., Hoehn M. M. A9145, a new adenine-containing antifungal antibiotic. I. Discovery and isolation. J Antibiot (Tokyo) 1973 Aug;26(8):463–465. doi: 10.7164/antibiotics.26.463. [DOI] [PubMed] [Google Scholar]
  22. Jones P. A. DNA methylation errors and cancer. Cancer Res. 1996 Jun 1;56(11):2463–2467. [PubMed] [Google Scholar]
  23. Kamatani N., Carson D. A. Abnormal regulation of methylthioadenosine and polyamine metabolism in methylthioadenosine phosphorylase-deficient human leukemic cell lines. Cancer Res. 1980 Nov;40(11):4178–4182. [PubMed] [Google Scholar]
  24. Karlin S., Burge C., Campbell A. M. Statistical analyses of counts and distributions of restriction sites in DNA sequences. Nucleic Acids Res. 1992 Mar 25;20(6):1363–1370. doi: 10.1093/nar/20.6.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Klimasauskas S., Roberts R. J. M.HhaI binds tightly to substrates containing mismatches at the target base. Nucleic Acids Res. 1995 Apr 25;23(8):1388–1395. doi: 10.1093/nar/23.8.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Knöll A., Jacobson D. P., Nishino H., Kretz P. L., Short J. M., Sommer S. S. A selectable system for mutation detection in the Big Blue lacI transgenic mouse system: what happens to the mutational spectra over time. Mutat Res. 1996 Jun 10;352(1-2):9–22. doi: 10.1016/0027-5107(95)00159-x. [DOI] [PubMed] [Google Scholar]
  27. Kumar N. V., Varshney U. Inefficient excision of uracil from loop regions of DNA oligomers by E. coli uracil DNA glycosylase. Nucleic Acids Res. 1994 Sep 11;22(18):3737–3741. doi: 10.1093/nar/22.18.3737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Laird P. W., Jaenisch R. DNA methylation and cancer. Hum Mol Genet. 1994;3(Spec No):1487–1495. doi: 10.1093/hmg/3.suppl_1.1487. [DOI] [PubMed] [Google Scholar]
  29. Lieb M., Bhagwat A. S. Very short patch repair: reducing the cost of cytosine methylation. Mol Microbiol. 1996 May;20(3):467–473. doi: 10.1046/j.1365-2958.1996.5291066.x. [DOI] [PubMed] [Google Scholar]
  30. Lieb M., Rehmat S. 5-Methylcytosine is not a mutation hot spot in nondividing Escherichia coli. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):940–945. doi: 10.1073/pnas.94.3.940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lin P. M., Lee C. H., Roberts R. J. Cloning and characterization of the genes encoding the MspI restriction modification system. Nucleic Acids Res. 1989 Apr 25;17(8):3001–3011. doi: 10.1093/nar/17.8.3001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mi S., Roberts R. J. How M.MspI and M.HpaII decide which base to methylate. Nucleic Acids Res. 1992 Sep 25;20(18):4811–4816. doi: 10.1093/nar/20.18.4811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Neddermann P., Jiricny J. Efficient removal of uracil from G.U mispairs by the mismatch-specific thymine DNA glycosylase from HeLa cells. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1642–1646. doi: 10.1073/pnas.91.5.1642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pegg A. E., Borchardt R. T., Coward J. K. Effects of inhibitors of spermidine and spermine synthesis on polyamine concentrations and growth of transformed mouse fibroblasts. Biochem J. 1981 Jan 15;194(1):79–89. doi: 10.1042/bj1940079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schlenk F. Methylthioadenosine. Adv Enzymol Relat Areas Mol Biol. 1983;54:195–265. doi: 10.1002/9780470122990.ch4. [DOI] [PubMed] [Google Scholar]
  36. Schluckebier G., Kozak M., Bleimling N., Weinhold E., Saenger W. Differential binding of S-adenosylmethionine S-adenosylhomocysteine and Sinefungin to the adenine-specific DNA methyltransferase M.TaqI. J Mol Biol. 1997 Jan 10;265(1):56–67. doi: 10.1006/jmbi.1996.0711. [DOI] [PubMed] [Google Scholar]
  37. Schluckebier G., Labahn J., Granzin J., Schildkraut I., Saenger W. A model for DNA binding and enzyme action derived from crystallographic studies of the TaqI N6-adenine-methyltransferase. Gene. 1995 May 19;157(1-2):131–134. doi: 10.1016/0378-1119(94)00690-t. [DOI] [PubMed] [Google Scholar]
  38. Schorderet D. F., Gartler S. M. Analysis of CpG suppression in methylated and nonmethylated species. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):957–961. doi: 10.1073/pnas.89.3.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shen J. C., Rideout W. M., 3rd, Jones P. A. High frequency mutagenesis by a DNA methyltransferase. Cell. 1992 Dec 24;71(7):1073–1080. doi: 10.1016/s0092-8674(05)80057-1. [DOI] [PubMed] [Google Scholar]
  40. Shen J. C., Rideout W. M., 3rd, Jones P. A. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 1994 Mar 25;22(6):972–976. doi: 10.1093/nar/22.6.972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shen J. C., Zingg J. M., Yang A. S., Schmutte C., Jones P. A. A mutant HpaII methyltransferase functions as a mutator enzyme. Nucleic Acids Res. 1995 Nov 11;23(21):4275–4282. doi: 10.1093/nar/23.21.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Steinberg R. A., Gorman K. B. Linked spontaneous CG----TA mutations at CpG sites in the gene for protein kinase regulatory subunit. Mol Cell Biol. 1992 Feb;12(2):767–772. doi: 10.1128/mcb.12.2.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stueber D., Bujard H. Transcription from efficient promoters can interfere with plasmid replication and diminish expression of plasmid specified genes. EMBO J. 1982;1(11):1399–1404. doi: 10.1002/j.1460-2075.1982.tb01329.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Taylor C., Ford K., Connolly B. A., Hornby D. P. Determination of the order of substrate addition to MspI DNA methyltransferase using a novel mechanism-based inhibitor. Biochem J. 1993 Apr 15;291(Pt 2):493–504. doi: 10.1042/bj2910493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wagner J., Claverie N., Danzin C. A rapid high-performance liquid chromatographic procedure for the simultaneous determination of methionine, ethionine, S-adenosylmethionine, S-adenosylethionine, and the natural polyamines in rat tissues. Anal Biochem. 1984 Jul;140(1):108–116. doi: 10.1016/0003-2697(84)90140-4. [DOI] [PubMed] [Google Scholar]
  46. Wagner J., Hirth Y., Piriou F., Zakett D., Claverie N., Danzin C. N-Acetyl decarboxylated S-adenosylmethionine, a new metabolite of decarboxylated S-adenosylmethionine: isolation and characterization. Biochem Biophys Res Commun. 1985 Dec 17;133(2):546–553. doi: 10.1016/0006-291x(85)90941-6. [DOI] [PubMed] [Google Scholar]
  47. Woodcock D. M., Adams J. K., Allan R. G., Cooper I. A. Effect of several inhibitors of enzymatic DNA methylation on the in vivo methylation of different classes of DNA sequences in a cultured human cell line. Nucleic Acids Res. 1983 Jan 25;11(2):489–499. doi: 10.1093/nar/11.2.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wu J. C., Santi D. V. Kinetic and catalytic mechanism of HhaI methyltransferase. J Biol Chem. 1987 Apr 5;262(10):4778–4786. [PubMed] [Google Scholar]
  49. Wyszynski M., Gabbara S., Bhagwat A. S. Cytosine deaminations catalyzed by DNA cytosine methyltransferases are unlikely to be the major cause of mutational hot spots at sites of cytosine methylation in Escherichia coli. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1574–1578. doi: 10.1073/pnas.91.4.1574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yang A. S., Shen J. C., Zingg J. M., Mi S., Jones P. A. HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucleic Acids Res. 1995 Apr 25;23(8):1380–1387. doi: 10.1093/nar/23.8.1380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yebra M. J., Bhagwat A. S. A cytosine methyltransferase converts 5-methylcytosine in DNA to thymine. Biochemistry. 1995 Nov 14;34(45):14752–14757. doi: 10.1021/bi00045a016. [DOI] [PubMed] [Google Scholar]
  52. Zingg J. M., Jones P. A. Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis. 1997 May;18(5):869–882. doi: 10.1093/carcin/18.5.869. [DOI] [PubMed] [Google Scholar]
  53. Zingg J. M., Shen J. C., Yang A. S., Rapoport H., Jones P. A. Methylation inhibitors can increase the rate of cytosine deamination by (cytosine-5)-DNA methyltransferase. Nucleic Acids Res. 1996 Aug 15;24(16):3267–3275. doi: 10.1093/nar/24.16.3267. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES