Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 May 15;332(Pt 1):237–242. doi: 10.1042/bj3320237

The iron ligand sphere geometry of mammalian 15-lipoxygenases.

R J Kuban 1, R Wiesner 1, J Rathman 1, G Veldink 1, H Nolting 1, V A Solé 1, H Kühn 1
PMCID: PMC1219473  PMID: 9576873

Abstract

We investigated the geometry of the iron ligand sphere of the native rabbit 15-lipoxygenase (15-LOX) by X-ray absorption spectroscopy using synchrotron radiation. The soybean LOX-1 was used as a reference compound because its iron ligand sphere is well characterized. For structural information the X-ray absorption spectra were evaluated using the Excurve Program (CCLRC Daresbury Laboratory, Warrington, U.K.). From the positions of the absorption edges and from the intensities of the 1s-3d pre-edge transition peaks a six-coordinate ferrous iron was concluded for the rabbit 15-LOX. Evaluation of the extended region of the absorption spectra suggested six nitrogen and/or oxygen atoms as direct iron ligands, and the following binding distances were determined (means+/-S.D.; estimated accuracy is +/-0.001nm for bond distances, on the basis of more than 22 X-ray absorption spectra): 0.213+/-0.001nm, 0.213+/-0. 001 nm, 0.236+/-0.001 nm, 0.293+/-0.001 nm, 0.189+/-0.001 nm and 0. 242+/-0.001. Lyophilization of the LOX altered the binding distances but did not destroy the octahedral iron ligand sphere. For construction of a structural model of the iron ligand sphere the binding distances extracted from the X-ray spectra were assigned to specific amino acids (His-360, -365, -540, -544 and the C-terminal Ile-662) by molecular modelling using the crystal coordinates of the soybean LOX-1 and of a rabbit 15-LOX-inhibitor complex.

Full Text

The Full Text of this article is available as a PDF (542.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belkner J., Wiesner R., Rathman J., Barnett J., Sigal E., Kühn H. Oxygenation of lipoproteins by mammalian lipoxygenases. Eur J Biochem. 1993 Apr 1;213(1):251–261. doi: 10.1111/j.1432-1033.1993.tb17755.x. [DOI] [PubMed] [Google Scholar]
  2. Bertini I., Briganti F., Mangani S., Nolting H. F., Scozzafava A. X-ray absorption studies on catechol 2,3-dioxygenase from Pseudomonas putida mt2. Biochemistry. 1994 Sep 6;33(35):10777–10784. doi: 10.1021/bi00201a027. [DOI] [PubMed] [Google Scholar]
  3. Borngräber S., Kuban R. J., Anton M., Kühn H. Phenylalanine 353 is a primary determinant for the positional specificity of mammalian 15-lipoxygenases. J Mol Biol. 1996 Dec 20;264(5):1145–1153. doi: 10.1006/jmbi.1996.0702. [DOI] [PubMed] [Google Scholar]
  4. Boyington J. C., Gaffney B. J., Amzel L. M. The three-dimensional structure of an arachidonic acid 15-lipoxygenase. Science. 1993 Jun 4;260(5113):1482–1486. doi: 10.1126/science.8502991. [DOI] [PubMed] [Google Scholar]
  5. Chen X. S., Kurre U., Jenkins N. A., Copeland N. G., Funk C. D. cDNA cloning, expression, mutagenesis of C-terminal isoleucine, genomic structure, and chromosomal localizations of murine 12-lipoxygenases. J Biol Chem. 1994 May 13;269(19):13979–13987. [PubMed] [Google Scholar]
  6. Dunham W. R., Carroll R. T., Thompson J. F., Sands R. H., Funk M. O., Jr The initial characterization of the iron environment in lipoxygenase by Mössbauer spectroscopy. Eur J Biochem. 1990 Jul 5;190(3):611–617. doi: 10.1111/j.1432-1033.1990.tb15616.x. [DOI] [PubMed] [Google Scholar]
  7. Folcik V. A., Nivar-Aristy R. A., Krajewski L. P., Cathcart M. K. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest. 1995 Jul;96(1):504–510. doi: 10.1172/JCI118062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gillmor S. A., Villaseñor A., Fletterick R., Sigal E., Browner M. F. The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nat Struct Biol. 1997 Dec;4(12):1003–1009. doi: 10.1038/nsb1297-1003. [DOI] [PubMed] [Google Scholar]
  9. Hammarberg T., Zhang Y. Y., Lind B., Radmark O., Samuelsson B. Mutations at the C-terminal isoleucine and other potential iron ligands of 5-lipoxygenase. Eur J Biochem. 1995 Jun 1;230(2):401–407. doi: 10.1111/j.1432-1033.1995.0401h.x. [DOI] [PubMed] [Google Scholar]
  10. Kühn H., Belkner J., Zaiss S., Fährenklemper T., Wohlfeil S. Involvement of 15-lipoxygenase in early stages of atherogenesis. J Exp Med. 1994 Jun 1;179(6):1903–1911. doi: 10.1084/jem.179.6.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lewis R. A., Austen K. F., Soberman R. J. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med. 1990 Sep 6;323(10):645–655. doi: 10.1056/NEJM199009063231006. [DOI] [PubMed] [Google Scholar]
  12. Minor W., Steczko J., Bolin J. T., Otwinowski Z., Axelrod B. Crystallographic determination of the active site iron and its ligands in soybean lipoxygenase L-1. Biochemistry. 1993 Jun 29;32(25):6320–6323. doi: 10.1021/bi00076a003. [DOI] [PubMed] [Google Scholar]
  13. Minor W., Steczko J., Stec B., Otwinowski Z., Bolin J. T., Walter R., Axelrod B. Crystal structure of soybean lipoxygenase L-1 at 1.4 A resolution. Biochemistry. 1996 Aug 20;35(33):10687–10701. doi: 10.1021/bi960576u. [DOI] [PubMed] [Google Scholar]
  14. Nelson M. J., Seitz S. P. The structure and function of lipoxygenase. Curr Opin Struct Biol. 1994 Dec;4(6):878–884. doi: 10.1016/0959-440x(94)90270-4. [DOI] [PubMed] [Google Scholar]
  15. Prigge S. T., Boyington J. C., Gaffney B. J., Amzel L. M. Structure conservation in lipoxygenases: structural analysis of soybean lipoxygenase-1 and modeling of human lipoxygenases. Proteins. 1996 Mar;24(3):275–291. doi: 10.1002/(SICI)1097-0134(199603)24:3<275::AID-PROT1>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  16. Scarrow R. C., Trimitsis M. G., Buck C. P., Grove G. N., Cowling R. A., Nelson M. J. X-ray spectroscopy of the iron site in soybean lipoxygenase-1: changes in coordination upon oxidation or addition of methanol. Biochemistry. 1994 Dec 20;33(50):15023–15035. doi: 10.1021/bi00254a011. [DOI] [PubMed] [Google Scholar]
  17. Skrzypczak-Jankun E., Amzel L. M., Kroa B. A., Funk M. O., Jr Structure of soybean lipoxygenase L3 and a comparison with its L1 isoenzyme. Proteins. 1997 Sep;29(1):15–31. [PubMed] [Google Scholar]
  18. Suzuki H., Kishimoto K., Yoshimoto T., Yamamoto S., Kanai F., Ebina Y., Miyatake A., Tanabe T. Site-directed mutagenesis studies on the iron-binding domain and the determinant for the substrate oxygenation site of porcine leukocyte arachidonate 12-lipoxygenase. Biochim Biophys Acta. 1994 Jan 20;1210(3):308–316. doi: 10.1016/0005-2760(94)90234-8. [DOI] [PubMed] [Google Scholar]
  19. Van der Heijdt L. M., Feiters M. C., Navaratnam S., Nolting H. F., Hermes C., Veldink G. A., Vliegenthart J. F. X-ray absorption spectroscopy of soybean lipoxygenase-1. Influence of lipid hydroperoxide activation and lyophilization on the structure of the non-heme iron active site. Eur J Biochem. 1992 Jul 15;207(2):793–802. doi: 10.1111/j.1432-1033.1992.tb17110.x. [DOI] [PubMed] [Google Scholar]
  20. Yamamoto S. Mammalian lipoxygenases: molecular structures and functions. Biochim Biophys Acta. 1992 Oct 30;1128(2-3):117–131. doi: 10.1016/0005-2760(92)90297-9. [DOI] [PubMed] [Google Scholar]
  21. Ylä-Herttuala S., Rosenfeld M. E., Parthasarathy S., Sigal E., Särkioja T., Witztum J. L., Steinberg D. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest. 1991 Apr;87(4):1146–1152. doi: 10.1172/JCI115111. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES