Abstract
We investigated the geometry of the iron ligand sphere of the native rabbit 15-lipoxygenase (15-LOX) by X-ray absorption spectroscopy using synchrotron radiation. The soybean LOX-1 was used as a reference compound because its iron ligand sphere is well characterized. For structural information the X-ray absorption spectra were evaluated using the Excurve Program (CCLRC Daresbury Laboratory, Warrington, U.K.). From the positions of the absorption edges and from the intensities of the 1s-3d pre-edge transition peaks a six-coordinate ferrous iron was concluded for the rabbit 15-LOX. Evaluation of the extended region of the absorption spectra suggested six nitrogen and/or oxygen atoms as direct iron ligands, and the following binding distances were determined (means+/-S.D.; estimated accuracy is +/-0.001nm for bond distances, on the basis of more than 22 X-ray absorption spectra): 0.213+/-0.001nm, 0.213+/-0. 001 nm, 0.236+/-0.001 nm, 0.293+/-0.001 nm, 0.189+/-0.001 nm and 0. 242+/-0.001. Lyophilization of the LOX altered the binding distances but did not destroy the octahedral iron ligand sphere. For construction of a structural model of the iron ligand sphere the binding distances extracted from the X-ray spectra were assigned to specific amino acids (His-360, -365, -540, -544 and the C-terminal Ile-662) by molecular modelling using the crystal coordinates of the soybean LOX-1 and of a rabbit 15-LOX-inhibitor complex.
Full Text
The Full Text of this article is available as a PDF (542.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belkner J., Wiesner R., Rathman J., Barnett J., Sigal E., Kühn H. Oxygenation of lipoproteins by mammalian lipoxygenases. Eur J Biochem. 1993 Apr 1;213(1):251–261. doi: 10.1111/j.1432-1033.1993.tb17755.x. [DOI] [PubMed] [Google Scholar]
- Bertini I., Briganti F., Mangani S., Nolting H. F., Scozzafava A. X-ray absorption studies on catechol 2,3-dioxygenase from Pseudomonas putida mt2. Biochemistry. 1994 Sep 6;33(35):10777–10784. doi: 10.1021/bi00201a027. [DOI] [PubMed] [Google Scholar]
- Borngräber S., Kuban R. J., Anton M., Kühn H. Phenylalanine 353 is a primary determinant for the positional specificity of mammalian 15-lipoxygenases. J Mol Biol. 1996 Dec 20;264(5):1145–1153. doi: 10.1006/jmbi.1996.0702. [DOI] [PubMed] [Google Scholar]
- Boyington J. C., Gaffney B. J., Amzel L. M. The three-dimensional structure of an arachidonic acid 15-lipoxygenase. Science. 1993 Jun 4;260(5113):1482–1486. doi: 10.1126/science.8502991. [DOI] [PubMed] [Google Scholar]
- Chen X. S., Kurre U., Jenkins N. A., Copeland N. G., Funk C. D. cDNA cloning, expression, mutagenesis of C-terminal isoleucine, genomic structure, and chromosomal localizations of murine 12-lipoxygenases. J Biol Chem. 1994 May 13;269(19):13979–13987. [PubMed] [Google Scholar]
- Dunham W. R., Carroll R. T., Thompson J. F., Sands R. H., Funk M. O., Jr The initial characterization of the iron environment in lipoxygenase by Mössbauer spectroscopy. Eur J Biochem. 1990 Jul 5;190(3):611–617. doi: 10.1111/j.1432-1033.1990.tb15616.x. [DOI] [PubMed] [Google Scholar]
- Folcik V. A., Nivar-Aristy R. A., Krajewski L. P., Cathcart M. K. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest. 1995 Jul;96(1):504–510. doi: 10.1172/JCI118062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillmor S. A., Villaseñor A., Fletterick R., Sigal E., Browner M. F. The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nat Struct Biol. 1997 Dec;4(12):1003–1009. doi: 10.1038/nsb1297-1003. [DOI] [PubMed] [Google Scholar]
- Hammarberg T., Zhang Y. Y., Lind B., Radmark O., Samuelsson B. Mutations at the C-terminal isoleucine and other potential iron ligands of 5-lipoxygenase. Eur J Biochem. 1995 Jun 1;230(2):401–407. doi: 10.1111/j.1432-1033.1995.0401h.x. [DOI] [PubMed] [Google Scholar]
- Kühn H., Belkner J., Zaiss S., Fährenklemper T., Wohlfeil S. Involvement of 15-lipoxygenase in early stages of atherogenesis. J Exp Med. 1994 Jun 1;179(6):1903–1911. doi: 10.1084/jem.179.6.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis R. A., Austen K. F., Soberman R. J. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med. 1990 Sep 6;323(10):645–655. doi: 10.1056/NEJM199009063231006. [DOI] [PubMed] [Google Scholar]
- Minor W., Steczko J., Bolin J. T., Otwinowski Z., Axelrod B. Crystallographic determination of the active site iron and its ligands in soybean lipoxygenase L-1. Biochemistry. 1993 Jun 29;32(25):6320–6323. doi: 10.1021/bi00076a003. [DOI] [PubMed] [Google Scholar]
- Minor W., Steczko J., Stec B., Otwinowski Z., Bolin J. T., Walter R., Axelrod B. Crystal structure of soybean lipoxygenase L-1 at 1.4 A resolution. Biochemistry. 1996 Aug 20;35(33):10687–10701. doi: 10.1021/bi960576u. [DOI] [PubMed] [Google Scholar]
- Nelson M. J., Seitz S. P. The structure and function of lipoxygenase. Curr Opin Struct Biol. 1994 Dec;4(6):878–884. doi: 10.1016/0959-440x(94)90270-4. [DOI] [PubMed] [Google Scholar]
- Prigge S. T., Boyington J. C., Gaffney B. J., Amzel L. M. Structure conservation in lipoxygenases: structural analysis of soybean lipoxygenase-1 and modeling of human lipoxygenases. Proteins. 1996 Mar;24(3):275–291. doi: 10.1002/(SICI)1097-0134(199603)24:3<275::AID-PROT1>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Scarrow R. C., Trimitsis M. G., Buck C. P., Grove G. N., Cowling R. A., Nelson M. J. X-ray spectroscopy of the iron site in soybean lipoxygenase-1: changes in coordination upon oxidation or addition of methanol. Biochemistry. 1994 Dec 20;33(50):15023–15035. doi: 10.1021/bi00254a011. [DOI] [PubMed] [Google Scholar]
- Skrzypczak-Jankun E., Amzel L. M., Kroa B. A., Funk M. O., Jr Structure of soybean lipoxygenase L3 and a comparison with its L1 isoenzyme. Proteins. 1997 Sep;29(1):15–31. [PubMed] [Google Scholar]
- Suzuki H., Kishimoto K., Yoshimoto T., Yamamoto S., Kanai F., Ebina Y., Miyatake A., Tanabe T. Site-directed mutagenesis studies on the iron-binding domain and the determinant for the substrate oxygenation site of porcine leukocyte arachidonate 12-lipoxygenase. Biochim Biophys Acta. 1994 Jan 20;1210(3):308–316. doi: 10.1016/0005-2760(94)90234-8. [DOI] [PubMed] [Google Scholar]
- Van der Heijdt L. M., Feiters M. C., Navaratnam S., Nolting H. F., Hermes C., Veldink G. A., Vliegenthart J. F. X-ray absorption spectroscopy of soybean lipoxygenase-1. Influence of lipid hydroperoxide activation and lyophilization on the structure of the non-heme iron active site. Eur J Biochem. 1992 Jul 15;207(2):793–802. doi: 10.1111/j.1432-1033.1992.tb17110.x. [DOI] [PubMed] [Google Scholar]
- Yamamoto S. Mammalian lipoxygenases: molecular structures and functions. Biochim Biophys Acta. 1992 Oct 30;1128(2-3):117–131. doi: 10.1016/0005-2760(92)90297-9. [DOI] [PubMed] [Google Scholar]
- Ylä-Herttuala S., Rosenfeld M. E., Parthasarathy S., Sigal E., Särkioja T., Witztum J. L., Steinberg D. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest. 1991 Apr;87(4):1146–1152. doi: 10.1172/JCI115111. [DOI] [PMC free article] [PubMed] [Google Scholar]