Abstract
A selenium-containing catalytic antibody (Se-4A4), prepared by converting reactive serine residues of a monoclonal antibody (4A4) raised against a GSH derivative into selenocysteines, acts as a mimic of cytosolic glutathione peroxidase (cGPX). To clarify the mechanism of action of this catalytic antibody, detailed studies on kinetic behaviour and biological activity were carried out. A rate of acceleration (kcat/Km/kuncat) 10(7)-fold that of the uncatalytic reaction is observed. Under similar conditions, the turnover number (kcat) of Se-4A4 is 42% of that of the natural rabbit liver cGPX. The Se-4A4 reaction involves a Ping Pong mechanism, which is the same as that of the natural cGPX. The selenocysteine residue is located in the binding site of the antibody and is shown to be crucial for this activity. Of the thiol compounds tested, only GSH is able to serve as substrate for Se-4A4. It was demonstrated, using the free-radical-damage system (hypoxanthine/xanthine oxidase) of cardiac mitochondria, that Se-4A4 can protect mitochondria from free-radical damage at least 10(4)-fold more effectively than the natural cGPX.
Full Text
The Full Text of this article is available as a PDF (256.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell I. M., Fisher M. L., Wu Z. P., Hilvert D. Kinetic studies on the peroxidase activity of selenosubtilisin. Biochemistry. 1993 Apr 13;32(14):3754–3762. doi: 10.1021/bi00065a030. [DOI] [PubMed] [Google Scholar]
- Cavallini D., Graziani M. T., Dupré S. Determination of disulphide groups in proteins. Nature. 1966 Oct 15;212(5059):294–295. doi: 10.1038/212294a0. [DOI] [PubMed] [Google Scholar]
- Chiu D. T., Stults F. H., Tappel A. L. Purification and properties of rat lung soluble glutathione peroxidase. Biochim Biophys Acta. 1976 Oct 11;445(3):558–566. doi: 10.1016/0005-2744(76)90110-8. [DOI] [PubMed] [Google Scholar]
- Chiu D., Tappel A. L., Millard M. M. Improved procedure for X-ray photoelectron spectroscopy of selenium-glutathione peroxidase and application to the rat liver enzyme. Arch Biochem Biophys. 1977 Nov;184(1):209–215. doi: 10.1016/0003-9861(77)90344-7. [DOI] [PubMed] [Google Scholar]
- Dalziel K. The interpretation of kinetic data for enzyme-catalysed reactions involving three substrates. Biochem J. 1969 Sep;114(3):547–556. doi: 10.1042/bj1140547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol. 1980;70(A):419–439. doi: 10.1016/s0076-6879(80)70067-8. [DOI] [PubMed] [Google Scholar]
- Epp O., Ladenstein R., Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem. 1983 Jun 1;133(1):51–69. doi: 10.1111/j.1432-1033.1983.tb07429.x. [DOI] [PubMed] [Google Scholar]
- Flohé L., Loschen G., Günzler W. A., Eichele E. Glutathione peroxidase, V. The kinetic mechanism. Hoppe Seylers Z Physiol Chem. 1972 Jun;353(6):987–999. doi: 10.1515/bchm2.1972.353.1.987. [DOI] [PubMed] [Google Scholar]
- Forstrom J. W., Zakowski J. J., Tappel A. L. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry. 1978 Jun 27;17(13):2639–2644. doi: 10.1021/bi00606a028. [DOI] [PubMed] [Google Scholar]
- Friguet B., Chaffotte A. F., Djavadi-Ohaniance L., Goldberg M. E. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods. 1985 Mar 18;77(2):305–319. doi: 10.1016/0022-1759(85)90044-4. [DOI] [PubMed] [Google Scholar]
- Ganther H. E., Kraus R. J. Oxidation states of glutathione peroxidase. Methods Enzymol. 1984;107:593–602. doi: 10.1016/0076-6879(84)07043-9. [DOI] [PubMed] [Google Scholar]
- Janghorbani M., Ting B. T. Comparison of pneumatic nebulization and hydride generation inductively coupled plasma mass spectrometry for isotopic analysis of selenium. Anal Chem. 1989 Apr 1;61(7):701–708. doi: 10.1021/ac00182a013. [DOI] [PubMed] [Google Scholar]
- Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
- Luo G. M., Zhu Z. Q., Ding L., Gao G., Sun Q. A., Liu Z., Yang T. S., Shen J. C. Generation of selenium-containing abzyme by using chemical mutation. Biochem Biophys Res Commun. 1994 Feb 15;198(3):1240–1247. doi: 10.1006/bbrc.1994.1175. [DOI] [PubMed] [Google Scholar]
- MILLS G. C. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem. 1957 Nov;229(1):189–197. [PubMed] [Google Scholar]
- Maddipati K. R., Marnett L. J. Characterization of the major hydroperoxide-reducing activity of human plasma. Purification and properties of a selenium-dependent glutathione peroxidase. J Biol Chem. 1987 Dec 25;262(36):17398–17403. [PubMed] [Google Scholar]
- Mak I. T., Misra H. P., Weglicki W. B. Temporal relationship of free radical-induced lipid peroxidation and loss of latent enzyme activity in highly enriched hepatic lysosomes. J Biol Chem. 1983 Nov 25;258(22):13733–13737. [PubMed] [Google Scholar]
- Müller A., Cadenas E., Graf P., Sies H. A novel biologically active seleno-organic compound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem Pharmacol. 1984 Oct 15;33(20):3235–3239. doi: 10.1016/0006-2952(84)90083-2. [DOI] [PubMed] [Google Scholar]
- Reading C. L. Theory and methods for immunization in culture and monoclonal antibody production. J Immunol Methods. 1982 Sep 30;53(3):261–291. doi: 10.1016/0022-1759(82)90175-2. [DOI] [PubMed] [Google Scholar]
- Reichlin M. Use of glutaraldehyde as a coupling agent for proteins and peptides. Methods Enzymol. 1980;70(A):159–165. doi: 10.1016/s0076-6879(80)70047-2. [DOI] [PubMed] [Google Scholar]
- Saunders B. C. Glutathione. Its reaction with alkali and some N and S derivatives. Biochem J. 1934;28(6):1977–1981. doi: 10.1042/bj0281977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz P. G., Lerner R. A. From molecular diversity to catalysis: lessons from the immune system. Science. 1995 Sep 29;269(5232):1835–1842. doi: 10.1126/science.7569920. [DOI] [PubMed] [Google Scholar]
- Syed R., Wu Z. P., Hogle J. M., Hilvert D. Crystal structure of selenosubtilisin at 2.0-A resolution. Biochemistry. 1993 Jun 22;32(24):6157–6164. doi: 10.1021/bi00075a007. [DOI] [PubMed] [Google Scholar]
- Tamura T., Oikawa T., Ohtaka A., Fujii N., Esaki N., Soda K. Synthesis and characterization of the selenium analog of glutathione disulfide. Anal Biochem. 1993 Jan;208(1):151–154. doi: 10.1006/abio.1993.1021. [DOI] [PubMed] [Google Scholar]
- Ursini F., Maiorino M., Brigelius-Flohé R., Aumann K. D., Roveri A., Schomburg D., Flohé L. Diversity of glutathione peroxidases. Methods Enzymol. 1995;252:38–53. doi: 10.1016/0076-6879(95)52007-4. [DOI] [PubMed] [Google Scholar]
- Waud W. R., Brady F. O., Wiley R. D., Rajagopalan K. V. A new purification procedure for bovine milk xanthine oxidase: effect of proteolysis on the subunit structure. Arch Biochem Biophys. 1975 Aug;169(2):695–701. doi: 10.1016/0003-9861(75)90214-3. [DOI] [PubMed] [Google Scholar]
- Wendel A. Glutathione peroxidase. Methods Enzymol. 1981;77:325–333. doi: 10.1016/s0076-6879(81)77046-0. [DOI] [PubMed] [Google Scholar]
- Wendel A., Pilz W., Ladenstein R., Sawatzki G., Weser U. Substrate-induced redox change of selenium in glutathione peroxidase studied by x-ray photoelectron spectroscopy. Biochim Biophys Acta. 1975 Jan 23;377(1):211–215. doi: 10.1016/0005-2744(75)90303-4. [DOI] [PubMed] [Google Scholar]