Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Jun 1;332(Pt 2):315–320. doi: 10.1042/bj3320315

Proteasome activities decrease during dexamethasone-induced apoptosis of thymocytes.

J Beyette 1, G G Mason 1, R Z Murray 1, G M Cohen 1, A J Rivett 1
PMCID: PMC1219484  PMID: 9601058

Abstract

The induction of apoptosis in thymocytes by the glucocorticoid dexamethasone was used as a model system to investigate whether there are changes in 20 S and 26 S proteasome activities during apoptosis. We observed that thymocytes contain high concentrations of proteasomes and that following treatment with dexamethasone, cell extracts showed a decrease in proteasome chymotrypsin-like activity which correlated with the degree of apoptosis observed. The decrease in chymotrypsin-like activity of 20 S and 26S proteasomes was still apparent after these complexes had been partially purified from apoptotic thymocyte extracts and was therefore not due to competition resulting from a general increase in protein turnover. The trypsin-like and peptidylglutamylpeptide hydrolase activities of proteasome complexes were also observed to decrease during apoptosis, but these decreases were reversed by the inhibition of apoptosis by the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone. However, the chymotrypsin-like activity of proteasomes decreased further in the presence of the apoptosis inhibitor. Val-Ala-Asp-fluoromethylketone was found to inhibit the chymotrypsin- and trypsin-like activity of 26 S proteasomes in vitro. The decrease in proteasome activities in apoptosis did not appear to be due to a decrease in the concentration of total cellular proteasomes. Thus, the early decreases in 20 S and 26 S proteasome activities during apoptosis appear to be due to a down-regulation of their proteolytic activities and not to a decrease in their protein concentration. These data suggest that proteasomes may be responsible, in thymocytes, for the turnover of a protein that functions as a positive regulator of apoptosis.

Full Text

The Full Text of this article is available as a PDF (254.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker K., Schneider P., Hofmann K., Mattmann C., Tschopp J. Interaction of Fas(Apo-1/CD95) with proteins implicated in the ubiquitination pathway. FEBS Lett. 1997 Jul 21;412(1):102–106. doi: 10.1016/s0014-5793(97)00758-8. [DOI] [PubMed] [Google Scholar]
  2. Beg A. A., Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science. 1996 Nov 1;274(5288):782–784. doi: 10.1126/science.274.5288.782. [DOI] [PubMed] [Google Scholar]
  3. Boldin M. P., Mett I. L., Wallach D. A protein related to a proteasomal subunit binds to the intracellular domain of the p55 TNF receptor upstream to its 'death domain'. FEBS Lett. 1995 Jun 19;367(1):39–44. doi: 10.1016/0014-5793(95)00534-g. [DOI] [PubMed] [Google Scholar]
  4. Clarke A. R., Purdie C. A., Harrison D. J., Morris R. G., Bird C. C., Hooper M. L., Wyllie A. H. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature. 1993 Apr 29;362(6423):849–852. doi: 10.1038/362849a0. [DOI] [PubMed] [Google Scholar]
  5. Cohen G. M. Caspases: the executioners of apoptosis. Biochem J. 1997 Aug 15;326(Pt 1):1–16. doi: 10.1042/bj3260001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cohen G. M., Sun X. M., Snowden R. T., Ormerod M. G., Dinsdale D. Identification of a transitional preapoptotic population of thymocytes. J Immunol. 1993 Jul 15;151(2):566–574. [PubMed] [Google Scholar]
  7. Cui H., Matsui K., Omura S., Schauer S. L., Matulka R. A., Sonenshein G. E., Ju S. T. Proteasome regulation of activation-induced T cell death. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7515–7520. doi: 10.1073/pnas.94.14.7515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drexler H. C. Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):855–860. doi: 10.1073/pnas.94.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujita E., Mukasa T., Tsukahara T., Arahata K., Omura S., Momoi T. Enhancement of CPP32-like activity in the TNF-treated U937 cells by the proteasome inhibitors. Biochem Biophys Res Commun. 1996 Jul 5;224(1):74–79. doi: 10.1006/bbrc.1996.0986. [DOI] [PubMed] [Google Scholar]
  10. Grimm L. M., Goldberg A. L., Poirier G. G., Schwartz L. M., Osborne B. A. Proteasomes play an essential role in thymocyte apoptosis. EMBO J. 1996 Aug 1;15(15):3835–3844. [PMC free article] [PubMed] [Google Scholar]
  11. Imajoh-Ohmi S., Kawaguchi T., Sugiyama S., Tanaka K., Omura S., Kikuchi H. Lactacystin, a specific inhibitor of the proteasome, induces apoptosis in human monoblast U937 cells. Biochem Biophys Res Commun. 1995 Dec 26;217(3):1070–1077. doi: 10.1006/bbrc.1995.2878. [DOI] [PubMed] [Google Scholar]
  12. Kobayashi T., Shinozaki A., Momoi T., Arahata K., Tsukahara T. Identification of an interleukin-1 beta converting enzyme-like activity that increases upon treatment of P19 cells with retinoic acid as the proteasome. J Biochem. 1996 Oct;120(4):699–704. doi: 10.1093/oxfordjournals.jbchem.a021467. [DOI] [PubMed] [Google Scholar]
  13. Krappmann D., Wulczyn F. G., Scheidereit C. Different mechanisms control signal-induced degradation and basal turnover of the NF-kappaB inhibitor IkappaB alpha in vivo. EMBO J. 1996 Dec 2;15(23):6716–6726. [PMC free article] [PubMed] [Google Scholar]
  14. Kristensen P., Johnsen A. H., Uerkvitz W., Tanaka K., Hendil K. B. Human proteasome subunits from 2-dimensional gels identified by partial sequencing. Biochem Biophys Res Commun. 1994 Dec 30;205(3):1785–1789. doi: 10.1006/bbrc.1994.2876. [DOI] [PubMed] [Google Scholar]
  15. Kumar S., Harvey N. L. Role of multiple cellular proteases in the execution of programmed cell death. FEBS Lett. 1995 Nov 20;375(3):169–173. doi: 10.1016/0014-5793(95)01186-i. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lopes U. G., Erhardt P., Yao R., Cooper G. M. p53-dependent induction of apoptosis by proteasome inhibitors. J Biol Chem. 1997 May 16;272(20):12893–12896. doi: 10.1074/jbc.272.20.12893. [DOI] [PubMed] [Google Scholar]
  18. Majno G., Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995 Jan;146(1):3–15. [PMC free article] [PubMed] [Google Scholar]
  19. Maki C. G., Huibregtse J. M., Howley P. M. In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res. 1996 Jun 1;56(11):2649–2654. [PubMed] [Google Scholar]
  20. Nakajima T., Morita K., Ohi N., Arai T., Nozaki N., Kikuchi A., Osaka F., Yamao F., Oda K. Degradation of topoisomerase IIalpha during adenovirus E1A-induced apoptosis is mediated by the activation of the ubiquitin proteolysis system. J Biol Chem. 1996 Oct 4;271(40):24842–24849. doi: 10.1074/jbc.271.40.24842. [DOI] [PubMed] [Google Scholar]
  21. Palmer A., Mason G. G., Paramio J. M., Knecht E., Rivett A. J. Changes in proteasome localization during the cell cycle. Eur J Cell Biol. 1994 Jun;64(1):163–175. [PubMed] [Google Scholar]
  22. Palombella V. J., Rando O. J., Goldberg A. L., Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell. 1994 Sep 9;78(5):773–785. doi: 10.1016/s0092-8674(94)90482-0. [DOI] [PubMed] [Google Scholar]
  23. Pitzer F., Dantes A., Fuchs T., Baumeister W., Amsterdam A. Removal of proteasomes from the nucleus and their accumulation in apoptotic blebs during programmed cell death. FEBS Lett. 1996 Sep 23;394(1):47–50. doi: 10.1016/0014-5793(96)00920-9. [DOI] [PubMed] [Google Scholar]
  24. Raff M. C. Social controls on cell survival and cell death. Nature. 1992 Apr 2;356(6368):397–400. doi: 10.1038/356397a0. [DOI] [PubMed] [Google Scholar]
  25. Raffray M., Cohen G. M. Bis(tri-n-butyltin)oxide induces programmed cell death (apoptosis) in immature rat thymocytes. Arch Toxicol. 1991;65(2):135–139. doi: 10.1007/BF02034940. [DOI] [PubMed] [Google Scholar]
  26. Reidlinger J., Pike A. M., Savory P. J., Murray R. Z., Rivett A. J. Catalytic properties of 26 S and 20 S proteasomes and radiolabeling of MB1, LMP7, and C7 subunits associated with trypsin-like and chymotrypsin-like activities. J Biol Chem. 1997 Oct 3;272(40):24899–24905. doi: 10.1074/jbc.272.40.24899. [DOI] [PubMed] [Google Scholar]
  27. Rivett A. J., Knecht E. Protein turnover: proteasome location. Curr Biol. 1993 Feb;3(2):127–129. doi: 10.1016/0960-9822(93)90173-l. [DOI] [PubMed] [Google Scholar]
  28. Rivett A. J., Savory P. J., Djaballah H. Multicatalytic endopeptidase complex: proteasome. Methods Enzymol. 1994;244:331–350. doi: 10.1016/0076-6879(94)44026-3. [DOI] [PubMed] [Google Scholar]
  29. Rivett A. J., Sweeney S. T. Properties of subunits of the multicatalytic proteinase complex revealed by the use of subunit-specific antibodies. Biochem J. 1991 Aug 15;278(Pt 1):171–177. doi: 10.1042/bj2780171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sadoul R., Fernandez P. A., Quiquerez A. L., Martinou I., Maki M., Schröter M., Becherer J. D., Irmler M., Tschopp J., Martinou J. C. Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons. EMBO J. 1996 Aug 1;15(15):3845–3852. [PMC free article] [PubMed] [Google Scholar]
  31. Salvesen G. S., Dixit V. M. Caspases: intracellular signaling by proteolysis. Cell. 1997 Nov 14;91(4):443–446. doi: 10.1016/s0092-8674(00)80430-4. [DOI] [PubMed] [Google Scholar]
  32. Shi L., Kam C. M., Powers J. C., Aebersold R., Greenberg A. H. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med. 1992 Dec 1;176(6):1521–1529. doi: 10.1084/jem.176.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shinohara K., Tomioka M., Nakano H., Toné S., Ito H., Kawashima S. Apoptosis induction resulting from proteasome inhibition. Biochem J. 1996 Jul 15;317(Pt 2):385–388. doi: 10.1042/bj3170385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Soldatenkov V. A., Dritschilo A. Apoptosis of Ewing's sarcoma cells is accompanied by accumulation of ubiquitinated proteins. Cancer Res. 1997 Sep 15;57(18):3881–3885. [PubMed] [Google Scholar]
  35. Tanaka K., Ii K., Ichihara A., Waxman L., Goldberg A. L. A high molecular weight protease in the cytosol of rat liver. I. Purification, enzymological properties, and tissue distribution. J Biol Chem. 1986 Nov 15;261(32):15197–15203. [PubMed] [Google Scholar]
  36. Tanaka K., Tsurumi C. The 26S proteasome: subunits and functions. Mol Biol Rep. 1997 Mar;24(1-2):3–11. doi: 10.1023/a:1006876904158. [DOI] [PubMed] [Google Scholar]
  37. Tanimoto Y., Onishi Y., Hashimoto S., Kizaki H. Peptidyl aldehyde inhibitors of proteasome induce apoptosis rapidly in mouse lymphoma RVC cells. J Biochem. 1997 Mar;121(3):542–549. doi: 10.1093/oxfordjournals.jbchem.a021620. [DOI] [PubMed] [Google Scholar]
  38. Thornberry N. A., Bull H. G., Calaycay J. R., Chapman K. T., Howard A. D., Kostura M. J., Miller D. K., Molineaux S. M., Weidner J. R., Aunins J. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992 Apr 30;356(6372):768–774. doi: 10.1038/356768a0. [DOI] [PubMed] [Google Scholar]
  39. Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980 Apr 10;284(5756):555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES