Abstract
The nitric oxide synthases are dimeric enzymes in which the intersubunit contacts are formed by the P-450-haem-containing, tetrahydrobiopterin-dependent oxygenase domain. The dimerization of the neuronal isoenzyme was shown previously to be triggered by Fe-protoporphyrin IX (haemin). We report for the first time the reactivation of the haem-deficient neuronal isoenzyme (from rat, expressed in a baculovirus/insect cell system) after haem reconstitution. We further examined the reconstitution of the enzyme with protoporphyrin IX (PPIX) and its Mn and Co complexes. All of these porphyrins inserted into the haem pocket, as assessed by quenching of intrinsic protein fluorescence. In addition to haemin, MnPPIX stimulated dimerization, as measured by gel filtration and by cross-linking with glutaraldehyde. In contrast, neither CoPPIX nor PPIX stimulated dimerization. The absorbance spectra of the reconstituted enzymes were measured and compared with published results on P-450 enzymes reconstituted with the same metals. The results suggest that those metalloporphyrins which caused dimerization were able to acquire a thiolate ligand from the protein, and we propose that this ligation is the trigger for dimerization. Substrate and tetrahydrobiopterin binding sites only emerged with the metalloporphyrins that caused dimerization.
Full Text
The Full Text of this article is available as a PDF (363.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen M. E., Moffat J. K., Gibson Q. H. The kinetics of ligand binding and of the association-dissociation reactions of human hemoglobin. Properties of deoxyhemoglobin dimers. J Biol Chem. 1971 May 10;246(9):2796–2807. [PubMed] [Google Scholar]
- Baek K. J., Thiel B. A., Lucas S., Stuehr D. J. Macrophage nitric oxide synthase subunits. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme. J Biol Chem. 1993 Oct 5;268(28):21120–21129. [PubMed] [Google Scholar]
- Crane B. R., Arvai A. S., Gachhui R., Wu C., Ghosh D. K., Getzoff E. D., Stuehr D. J., Tainer J. A. The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science. 1997 Oct 17;278(5337):425–431. doi: 10.1126/science.278.5337.425. [DOI] [PubMed] [Google Scholar]
- GIBSON Q. H. THE COMBINATION OF PORPHYRINS WITH NATIVE HUMAN GLOBIN. J Biol Chem. 1964 Oct;239:3282–3287. [PubMed] [Google Scholar]
- Gelb M. H., Toscano W. A., Jr, Sligar S. G. Chemical mechanisms for cytochrome P-450 oxidation: spectral and catalytic properties of a manganese-substituted protein. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5758–5762. doi: 10.1073/pnas.79.19.5758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh D. K., Abu-Soud H. M., Stuehr D. J. Domains of macrophage N(O) synthase have divergent roles in forming and stabilizing the active dimeric enzyme. Biochemistry. 1996 Feb 6;35(5):1444–1449. doi: 10.1021/bi9521295. [DOI] [PubMed] [Google Scholar]
- Ghosh D. K., Stuehr D. J. Macrophage NO synthase: characterization of isolated oxygenase and reductase domains reveals a head-to-head subunit interaction. Biochemistry. 1995 Jan 24;34(3):801–807. doi: 10.1021/bi00003a013. [DOI] [PubMed] [Google Scholar]
- Gorren A. C., List B. M., Schrammel A., Pitters E., Hemmens B., Werner E. R., Schmidt K., Mayer B. Tetrahydrobiopterin-free neuronal nitric oxide synthase: evidence for two identical highly anticooperative pteridine binding sites. Biochemistry. 1996 Dec 24;35(51):16735–16745. doi: 10.1021/bi961931j. [DOI] [PubMed] [Google Scholar]
- Gorren A. C., Schrammel A., Schmidt K., Mayer B. Thiols and neuronal nitric oxide synthase: complex formation, competitive inhibition, and enzyme stabilization. Biochemistry. 1997 Apr 8;36(14):4360–4366. doi: 10.1021/bi962381s. [DOI] [PubMed] [Google Scholar]
- Harteneck C., Klatt P., Schmidt K., Mayer B. Expression of rat brain nitric oxide synthase in baculovirus-infected insect cells and characterization of the purified enzyme. Biochem J. 1994 Dec 15;304(Pt 3):683–686. doi: 10.1042/bj3040683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klatt P., Pfeiffer S., List B. M., Lehner D., Glatter O., Bächinger H. P., Werner E. R., Schmidt K., Mayer B. Characterization of heme-deficient neuronal nitric-oxide synthase reveals a role for heme in subunit dimerization and binding of the amino acid substrate and tetrahydrobiopterin. J Biol Chem. 1996 Mar 29;271(13):7336–7342. doi: 10.1074/jbc.271.13.7336. [DOI] [PubMed] [Google Scholar]
- Mayer B., Klatt P., List B. M., Harteneck C., Schmidt K. Large-scale purification of rat brain nitric oxide synthase from baculovirus overexpression system. Methods Enzymol. 1996;268:420–427. doi: 10.1016/s0076-6879(96)68044-6. [DOI] [PubMed] [Google Scholar]
- Mayer B., Klatt P., Werner E. R., Schmidt K. Molecular mechanisms of inhibition of porcine brain nitric oxide synthase by the antinociceptive drug 7-nitro-indazole. Neuropharmacology. 1994 Nov;33(11):1253–1259. doi: 10.1016/0028-3908(94)90024-8. [DOI] [PubMed] [Google Scholar]
- McRee D. E., Redford S. M., Meyer T. E., Cusanovich M. A. Crystallization and characterization of Chromatium vinosum cytochrome c'. J Biol Chem. 1990 Apr 5;265(10):5364–5365. [PubMed] [Google Scholar]
- Poulos T. L., Finzel B. C., Howard A. J. Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry. 1986 Sep 9;25(18):5314–5322. doi: 10.1021/bi00366a049. [DOI] [PubMed] [Google Scholar]
- Ruf H. H., Wende P. Hyperporphyrin spectra of ferric dimercaptide-hemin complexes. Models for ferric cytochrome P450-thiol complexes. J Am Chem Soc. 1977 Aug 3;99(16):5499–5500. doi: 10.1021/ja00458a054. [DOI] [PubMed] [Google Scholar]
- Sono M., Andersson L. A., Dawson J. H. Sulfur donor ligand binding to ferric cytochrome P-450-CAM and myoglobin. Ultraviolet-visible absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopic investigation of the complexes. J Biol Chem. 1982 Jul 25;257(14):8308–8320. [PubMed] [Google Scholar]
- Sono M., Stuehr D. J., Ikeda-Saito M., Dawson J. H. Identification of nitric oxide synthase as a thiolate-ligated heme protein using magnetic circular dichroism spectroscopy. Comparison with cytochrome P-450-CAM and chloroperoxidase. J Biol Chem. 1995 Aug 25;270(34):19943–19948. doi: 10.1074/jbc.270.34.19943. [DOI] [PubMed] [Google Scholar]
- Stuehr D. J. Structure-function aspects in the nitric oxide synthases. Annu Rev Pharmacol Toxicol. 1997;37:339–359. doi: 10.1146/annurev.pharmtox.37.1.339. [DOI] [PubMed] [Google Scholar]
- Wagner G. C., Gunsalus I. C., Wang M. Y., Hoffman B. M. Cobalt-substituted cytochrome P-450cam. J Biol Chem. 1981 Jun 25;256(12):6266–6273. [PubMed] [Google Scholar]
- Werner E. R., Schmid M., Werner-Felmayer G., Mayer B., Wachter H. Synthesis and characterization of 3H-labelled tetrahydrobiopterin. Biochem J. 1994 Nov 15;304(Pt 1):189–193. doi: 10.1042/bj3040189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yonetani T., Yamamoto H., Woodrow G. V., 3rd Studies on cobalt myoglobins and hemoglobins. I. Preparation and optical properties of myoglobins and hemoglobins containing cobalt proto-, meso-, and deuteroporphyrins and thermodynamic characterization of their reversible oxygenation. J Biol Chem. 1974 Feb 10;249(3):682–690. [PubMed] [Google Scholar]
- Yu C., Gunsalus I. C., Katagiri M., Suhara K., Takemori S. Cytochrome P-450cam. I. Crystallization and properties. J Biol Chem. 1974 Jan 10;249(1):94–101. [PubMed] [Google Scholar]