Abstract
Salicortin, a natural product abundant in most members of the Salicaceae family, is a mechanism-based inactivator of Agrobacterium faecalis beta-glucosidase. Inactivation is delayed in the presence of competitive inhibitors, thereby demonstrating the requirement for an enzyme-bound salicortin before inactivation. Product studies suggest that inactivation proceeds via a quinone methide intermediate formed by the fragmentation of the aglycone of salicortin while it is bound to the enzyme. Tryptic digest and HPLC/MS studies confirm the role of quinone methide attack and also show that the enzyme undergoes multiple modifications. In addition, when the inactivation was run in the presence of a mutant inactive form of the enzyme, HPLC/MS analyses clearly showed no modification of the mutant enzyme, demonstrating that the quinone methide does not exist in free solution and suggesting that inactivation is active-site directed.
Full Text
The Full Text of this article is available as a PDF (386.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Caron G., Withers S. G. Conduritol aziridine: a new mechanism-based glucosidase inactivator. Biochem Biophys Res Commun. 1989 Aug 30;163(1):495–499. doi: 10.1016/0006-291x(89)92164-5. [DOI] [PubMed] [Google Scholar]
- Dale M. P., Ensley H. E., Kern K., Sastry K. A., Byers L. D. Reversible inhibitors of beta-glucosidase. Biochemistry. 1985 Jul 2;24(14):3530–3539. doi: 10.1021/bi00335a022. [DOI] [PubMed] [Google Scholar]
- HELFERICH B., KLEINSCHMIDT T. ZUR KENNTNIS DES SUESSMANDELEMULSINS. Hoppe Seylers Z Physiol Chem. 1965;340:31–45. doi: 10.1515/bchm2.1965.340.1-2.31. [DOI] [PubMed] [Google Scholar]
- Kempton J. B., Withers S. G. Mechanism of Agrobacterium beta-glucosidase: kinetic studies. Biochemistry. 1992 Oct 20;31(41):9961–9969. doi: 10.1021/bi00156a015. [DOI] [PubMed] [Google Scholar]
- Legler G. Glucosidases. Methods Enzymol. 1977;46:368–381. doi: 10.1016/s0076-6879(77)46044-0. [DOI] [PubMed] [Google Scholar]
- Legler G. Glycoside hydrolases: mechanistic information from studies with reversible and irreversible inhibitors. Adv Carbohydr Chem Biochem. 1990;48:319–384. doi: 10.1016/s0065-2318(08)60034-7. [DOI] [PubMed] [Google Scholar]
- Miao S., Ziser L., Aebersold R., Withers S. G. Identification of glutamic acid 78 as the active site nucleophile in Bacillus subtilis xylanase using electrospray tandem mass spectrometry. Biochemistry. 1994 Jun 14;33(23):7027–7032. doi: 10.1021/bi00189a002. [DOI] [PubMed] [Google Scholar]
- Shanker R, Werner U, Bilau-Faust R, Hippler R, Wille U. Coincidence studies of quasimolecular electron emission in 700-keV Ar2+-Kr collisions. Phys Rev A Gen Phys. 1989 Sep 1;40(5):2335–2339. doi: 10.1103/physreva.40.2335. [DOI] [PubMed] [Google Scholar]
- Shulman M. L., Shiyan S. D., Khorlin A. Y. Specfic irreversible inhibition of sweet-almond beta-glucosidase by some beta-glycopyranosylepoxyalkanes and beta-d-glucopyranosyl isothiocyanate. Biochim Biophys Acta. 1976 Aug 12;445(1):169–181. doi: 10.1016/0005-2744(76)90170-4. [DOI] [PubMed] [Google Scholar]
- Withers S. G., Rupitz K., Street I. P. 2-Deoxy-2-fluoro-D-glycosyl fluorides. A new class of specific mechanism-based glycosidase inhibitors. J Biol Chem. 1988 Jun 15;263(17):7929–7932. [PubMed] [Google Scholar]
- Withers S. G., Umezawa K. Cyclophellitol: a naturally occurring mechanism-based inactivator of beta-glucosidases. Biochem Biophys Res Commun. 1991 May 31;177(1):532–537. doi: 10.1016/0006-291x(91)92016-d. [DOI] [PubMed] [Google Scholar]
- von Kries R., Shearer M., McCarthy P. T., Haug M., Harzer G., Göbel U. Vitamin K1 content of maternal milk: influence of the stage of lactation, lipid composition, and vitamin K1 supplements given to the mother. Pediatr Res. 1987 Nov;22(5):513–517. doi: 10.1203/00006450-198711000-00007. [DOI] [PubMed] [Google Scholar]